文章编号:1001-2060(2016)03-0092-05

油页岩半焦在流化床内的燃烧特性研究

力

动

勇 卢啸风 汪泉海 杨 宇 洪

(重庆大学低品位能源利用技术及系统教育部重点实验室 重庆 400044)

摘 要:为了实现油页岩半焦的鼓泡流化床燃烧 构建炉膛 尺寸 150 mm × 150 mm × 2 500 mm 的流化床试验台 研究了 油页岩半焦的燃烧特性和烟气中污染物的排放特性。研究 表明: 低热值半焦可以在鼓泡流化床中稳定燃烧; 随密相区 温度的升高 烟气含氧量及燃料停留时间降低 SO, 与 NO, 排放浓度增大;床层高度比(指床层高度与炉膛本体高度 比)为0.16时烟气含氧量及燃料停留时间有最大值;密相 区温度升至900 ℃时,飞灰与底渣的含碳量达到稳定值,且 飞灰浓度最低; 鼓泡流化床燃烧的典型工况: 流化风温取 400 ℃ 床层高度比取 0.16 炉内密相区温度取 900 ℃。

热

关键 词: 低热值; 油页岩半焦; 鼓泡床 中图分类号: TK223 文献标识码: A

第31卷第1期

2016年1月

DOI: 10. 16146/j. cnki. rndlgc. 2016. 03. 015

引 言

目前 油页岩的工业开发利用概括起来主要有 两个方面 即利用低温干馏技术提取页岩油和直接 燃烧发电^[1~3]。半焦是油页岩干馏过程的产物,由 于半焦的热值较低,大多被作为废弃物堆放。这样 的处理方式不仅占用了大量耕地,还带来了经济性 问题^[1~2]。因此 如何对半焦进行合理、有效利用就 成了油页岩炼油工业值得关注的问题。

目前对油页岩半焦的研究集中在对它进行热重 分析以及在中小型试验台上混烧^[3~6],也有少量文 献探讨了油页岩半焦在 CFB 锅炉中的燃烧特 性^[7~8] 但所采用的油页岩半焦热值都在 4 200 kJ/kg以上。然而随着油页岩干馏工艺的不断发展、 进步 干馏后产生的半焦热值也在逐渐降低 这类油 页岩半焦具有低固定碳、低挥发分、高灰分含量的特 点 热值约为 2 500 kJ/kg。若对该油页岩半焦采用 常规鼓泡流化床燃烧方式,在考虑了不可避免的散 热损失后 流化床燃烧系统无法保证热量的平衡 即 该油页岩半焦无法以常规流化床燃烧方式稳定 燃烧。

根据热力计算发现 密相区燃烧温度不变时 ,可 以通过改进燃烧系统 提升流化风温、提高半焦燃尽 率、控制烟气含氧量等方式增大系统的热量输入 实 现该低热值半焦在流化床内的稳定燃烧。本研究结 果不仅将燃烧技术向更低热值燃料进行了延展 ,而 且为分析该类油页岩半焦的燃烧特性提供了理论和 试验依据。

1.1 试验材料

试验中所用油页岩半焦由辽宁某厂提供,工业 分析与元素分析如表1所示。

	工业分析(干燥基)/%				元素分析(干燥基) /%					低位发热量
样品	全水分	灰分	挥发分	固定碳	碳	氢	氧	氮	硫	$Q_{ m ar,net}$
	M_{t}	$A_{\rm d}$	$V_{\rm d}$	FC_d	C_d	H_d	O_d	\mathbf{N}_{d}	\mathbf{S}_{d}	$/kJ \cdot kg^{-1}$
半焦	1.5	88.04	7.76	4.2	6.59	0.85	3.88	0.61	0.48	2 335.71

表1 油页岩半焦样品的成分分析 Tab. 1 Composition analysis of an oil shale semi - coke sample

收稿日期::2015-03-04; 修订日期:2015-03-30

基金项目:中国科学院战略性先导科技专项(XDA07030100)

作者简介:洪 勇(1990-),男 江苏盐城人 重庆大学硕士研究生.

通讯作者:卢啸风(1962-),男 重庆大学教授,博士生导师.

 ¹ 试验概况

流化床燃烧试验中的床料选用经过筛分的油页 岩半焦燃烧产生的灰渣颗粒。灰颗粒的粒径上限为 3 mm,堆积密度为929 kg/m³,真实密度为2164 kg/ m³。通过计算知床料空隙率为0.57。入炉油页岩 半焦的颗粒粒径上限为3 mm。

1.2 试验装置

试验系统由炉膛本体、给料系统、送风系统、电加热点火系统、冷却系统及测量系统组成,如图1所示。炉膛部分采用碳化硅制作,截面尺寸是150mm×150mm,炉膛高度为2500mm。烟道部分安装有蛇形管,以通入冷却介质(风或水)来降低烟道内的烟气温度。试验台剖面图如图2所示。

图 1 流化床燃烧试验系统 Fig. 1 Fluidized bed combustion test system

图 2 试验台剖面图 Fig. 2 Sectional view of the test rig

该试验台为小型流化床试验台。本研究最初采 用常规流化床燃烧方式燃烧低热值油页岩半焦,通 过热平衡分析及试验发现该燃烧方式无法维持密相 区的稳定燃烧后,分析并改进了燃烧系统:在流化风 输入端增设电加热系统以提升流化风温;在试验前, 将回料阀向上至旋风分离器底部填满循环灰,以防 止回料系统对炉内燃烧产生影响。

1.3 试验方法与试验工况

为研究炉内稳定燃烧时,炉内密相区温度及床 层高度比(指床层高度与炉膛本体高度比)等因素 对烟气含氧量与燃料在炉内停留时间的影响,设置 了两组工况。

工况 A: 研究密相区温度变化产生的影响,流化 风温取 400 ℃,床层高度比取 0.16,炉内密相区温 度分别取 850、900 和 950 ℃。

工况 B: 研究床层压力变化产生的影响,密相区 温度取900 ℃,流化风温取400 ℃,床层高度比分别 取0.12、0.16 和0.20。

其中,燃料在炉内的停留时间是指半焦颗粒从 入炉到排渣的平均时间,该值可由物料平衡计算 得到:

t = ($M_{\rm mx}$ $ imes$ T) / $M_{\rm pz}$	(1)
式中: <i>t</i> — 停留时间计算值 , min; <i>M</i> _{mx} -	炉内密相区
床料量 kg; T — 排渣时间 ,min; M _{pz} —	排渣量 "kg。

2 试验结果与分析

2.1 典型试验工况

选取如下试验工况进行密相区热平衡计算:流 化风温取 400 ℃,床层高度比取 0.16,炉内密相区 温度取 900 ℃。该工况下的计算结果如表 2 所示。

表 2 典型工况下的热平衡计算结果(kJ/kg)

Tab. 2 Heat balance calculation results under

the typical operating conditions(kJ/kg)

参数	数值
密相区半焦生成热 $Q_{ m scr}$	1943.88
流化风带入热 $Q_{ m hhf}$	340.80
烟气带出热 Q_{yq}	1028.07
飞灰带出热 Q_{fh}	106.05
炉膛排渣热 Q_{pz}	661.17

$$Q_{\rm sr} = (Q_{\rm scr} + Q_{\rm lhf}) - (Q_{\rm yq} + Q_{\rm fh} + Q_{\rm pz})$$
(2)
$$\eta = Q_{\rm sr} / (Q_{\rm scr} + Q_{\rm lhf})$$
(3)

式中: η 一散热损失占输入热的比例 \mathscr{M} ; Q_{sr} 一散热量计算值。

计算式(2)、式(3)得,净输入热量 $Q_{\text{net}} =$ 489.39 kJ/kg, $\eta = 21.42\%$ 。

提升流化风温不是简单地增加系统的热量输入,对密相区的燃烧效果也有极大的优化作用。与 常规流化床热平衡进行比较,发现密相区半焦生成 热量增加了8.79%。这是由于提高流化风温后,同 一工况下密相区半焦生成热占密相区输入热比重降 低,即单位时间所需投入的半焦量减少,排渣量也随 之降低。半焦颗粒在密相区的停留时间延长,燃尽 率增大。

2.2 密相区温度对燃烧特性的影响

2.2.1 烟气含氧量及燃料平均停留时间

图 3 为密相区温度对烟气含氧量及半焦平均停 留时间的影响。由图可知,烟气含氧量及燃料的平 均停留时间均随密相区温度的升高而减小。密相区 温度升高时,排烟温度也随之增加,因此为了维持密 相区半焦颗粒的燃烧稳定,给料量与流化风量也需 逐步增加。流化风量的加大促使床料空隙率增大, 更多的半焦颗粒被吹至床层表面空间,半焦颗粒与 氧气充分燃烧,使得半焦燃尽率增大、烟气含氧量降 低。在较高的密相区燃烧温度下,单位时间内入炉 半焦量有所增加,同时排渣量也会增大,这就使得半 焦颗粒在炉内的停留时间减少。

Fig. 3 Influence of temperature on flue gas and residence time

2.2.2 灰渣含碳量

密相区温度对灰渣含碳量的影响如图 4 所示。 温度从 850 ℃升高到 950 ℃,飞灰含碳量降幅约为 1.5%,并且维持在 3% 左右不再降低。此外,密相 区温度变化对底渣含碳量的影响较小,各工况下底 渣含碳量均能维持在 1%以下的极低水平。在该种 燃烧方式下,半焦颗粒能够得到充分燃烧,燃尽率 较高。

对油页岩半焦颗粒的分析表明,在油页岩热解 产生半焦过程中,大量挥发分析出形成了丰富的孔 结构^[9~10]。在送入炉膛燃烧时,半焦中的少量挥发 分析出和固定碳的燃烧使得孔结构继续发展。此外 半焦迅速与高温床料混合、摩擦和破碎,使得半焦内 的固定碳更快地暴露出来,与氧气发生反应。

2.3 运行床压对燃烧特性的影响

由图 5 可知,当床层高度比为 0.16 时,烟气含 氧量与平均停留时间这两个参数有较高值。分析认 为 这是由于进料口高度位置与床层高度比 0.16 相 接近,当床层高度低于给料口高度时,初入炉内的半 焦颗粒恰好位于燃烧状况最好的密相区表层,在高 温流化风与炽热床料的强烈热量传递下,迅速升温 燃烧。床层升高时,入炉半焦颗粒与排渣口距离增 大 延长了颗粒在密相区的停留时间。当床层高度 继续升高超过进料口时,入炉半焦颗粒的燃烧状况 开始变差 同时密相区易出现流化不良现象 流化风 由下向上穿越床层时 较高床层高度足以使得众多 小气泡聚合成大气泡穿越床层,半焦颗粒与氧气的 接触变得困难,为了稳定密相区温度,加快排渣速 率 降低了半焦在炉内的停留时间。此外 过多的床 料量会增大密相区壁面磨损,不利于锅炉的安全 运行^[11]。

2.4 污染物排放特性

半焦燃烧产生的烟气中包括了飞灰、 SO_2 、 NO_x 等污染物。本实验中 SO_2 、 NO_x 等污染气体排放浓 度由烟气分析仪测定,飞灰占灰渣的比例可由灰平 衡计算方法估算。不同密相区温度下烟气中各污染 物参数值如表 3 所示。

图 5 床层高度比对烟气含氧量与燃料 停留时间的影响

Fig. 5 Influence of the height of the bed layer on the oxygen content of flue gases and the residence time of fuel

由表 3 可知 密相区温度为 900 °C 时 烟气中飞 灰的浓度最低 ,说明流化风量与给料量的调节比例 最合理 ,油页岩半焦得到了充分地混合、燃烧。此 外 ,烟气中 SO₂与 NO_x的排放浓度均随密相区燃烧 温度的升高而增大。SO₂排放浓度增大是因为流化 风量的增加使得密相区趋于氧化性气氛 ,研究表明 氧化气氛有助于 SO₂的生成^[12] ,因此烟气中 SO₂浓 度增加。NO_x的产生量与氧量、温度等因素有关 ,密 相区温度升高时 ,油页岩半焦燃烧更加充分 ,还原性 气氛减弱 NO_x 的转化率逐步升高。

表 3 不同密相区温度下烟气中各污染物浓度

Tab. 3 Concentrations of different pollutants at various temperatures in the dense phase zone

密相区温	飞灰占灰	SO ₂ /	NO_{χ} /
度/℃	渣比例/%	mg • m $^{-3}$	mg • m ⁻³
850	23.98	1 785.04	537.27
900	15.49	3 339.32	676.62
950	30.34	5 427.83	683.98

3 结 论

(1) 在适宜的运行工况下,低热值的油页岩半 焦可以在鼓泡流化床中稳定燃烧; (2)密相区温度与运行床压对烟气含氧量及燃料平均停留时间的影响较明显。随着密相区温度的 升高,烟气含氧量及燃料平均停留时间有所减少;选择适宜的床层高度可以增加燃料在炉内的停留 时间;

(3) 燃烧产生的飞灰与底渣的含碳量在密相区 温度升高至 900 ℃ 时达到稳定值,分别为 3% 和1%;

(4) 烟气中飞灰浓度在 900 [°]C 时达到最低值, 而 SO₂与 NO_x的排放浓度均随着密相区温度的升高 而增大;

(5) 对各运行工况进行比较、分析后得到一个 最适合低热值油页岩半焦鼓泡流化床燃烧的典型工 况: 流化风温取 400 ℃ ,床层高度比取 0.16 ,炉内密 相区温度取 900 ℃。

参考文献:

- [1] 王 擎 吴 华 孙佰仲 筹. 桦甸油页岩半焦燃烧反应动力学研究[J]. 中国电机工程学 报 2006 26(7): 29-34.
 WANG Qing WU Hua SUN Bai-zhong et al. Study of the combustion reaction kinetics of Huadian oil shale semi-coke [J]. Journal of China Electric Machinery Engineering 2006 26(7): 29-34.
- [2] Grinberg A ,Keren M Podshivalov V. Producing electricity from Israeli oil shale with PFBC technology [J]. Oil Shale 2000 ,17(4): 307 - 312.
- [3] 孙佰仲,王 擎,李少华,等...油页岩及其半焦混合燃料燃烧
 特性试验研究[J].中国电机工程学报,2006,26(20):108
 -112.

SUN Bai-zhong ,WANG Qing ,LI Shao-hua ,et al. Experimental research of the combustion characteristics of oil shale and its semicoke mixture fuel [J]. Journal of China Electric Machinery Engineering 2006 26(20):108 – 112.

 [4] 刘典福. 半焦燃烧特性的热重试验研究[J]. 工程热物理学报, 2007 28(2):229-232.
 LIU Dian-fu. Thermogravimetric experimental study of the combus-

tion characteristics of semi-coke [J]. Engineering Thermophysics , 2007 28(2):229 – 232.

- [5] 柏静儒 豆海强 孙佰仲等. 油页岩及半焦混合燃烧的燃尽特性[J]. 动力工程 2007 27(5).815-819.
 BO Jing-ru DOU Hai-qiang SUN Bai-zhong et al. Burnout characteristics of oil shale and its semi-coke mixture [J]. Power Engineering 2007 27(5):815-819.
- [6] 孙佰仲. 油页岩及半焦混合燃烧特性理论与试验研究[D]. 北 京: 华北电力大学 2009.

SUN Bai-zhong. Theoretical and experimental study of the combus-

tion characteristics of oil shale and semi-coke mixture [D]. Beijing: North China University of Electric Power 2009.

[7] 余 斌. 循环流化床半焦燃烧特性研究 [D]. 杭州: 浙江大 学 2010.

YU Bin. Study of the combustion characteristics of semi-coke in a circulating fluidized bed [D]. Hangzhou: Zhejiang University 2010.

- [8] 熊源泉等.加压条件下半焦燃烧特性的试验研究[J].锅炉技 术 2001 32(11):12-14.
 XIONG Yuan-quan ,et al. Experimental study of the combustion characteristics of semi-coke under the pressurization conditions
 [J]. Boiler Technology 2001 32(11):12-14.
- [9] 秦宏等. 流化床内油页岩半焦燃烧过程孔隙特性分析[J]. 中 国电机工程学报 2008 28(35):14-20.

QIN Hong et al. Analysis of the porous characteristics of semi-coke

 of oil shale during its combustion process in a circulating fluidized bed [J]. Journal of China Electric Machinery Engineering ,2008 , 28(35): 14 – 20.

[10] 周 毅. 半焦孔隙结构的影响因素 [J]. 锅炉技术 ,2005 ,36
(4): 34 - 38.
ZHOU Yi. Factors influencing the porous structure of semi-coke

[J]. Boiler Technology 2005 36(4):34 – 38.[11] Mei L. Experimental study of fly ash fluidized bed combustion de-

- carbonization [J]. China Electrical Engineering 2014 34(26): 4454 – 4461.
- [12] Grovset S J , Williamson T , Sanyal A. Decomposition of pyrite during combustion of coal [J]. Fuel. 1987. 66: 478 – 486.

(陈 滨 编辑)

VEPCO 订购 501J 燃气轮机

据《Gas Turbine Wiorld》2015年5-6月刊报道, VEPCO(弗吉尼亚电气和电力公司)向日本 MHPS(三菱日立动力系统)订购3台501J燃气轮机,用于格林斯维莱县电站。

新的联合循环电站使 3 台高效率的 M501J 燃气轮机的输出功率与汽轮机输出功率相结合,结果形成在 北美洲最大的新建造的 CCGT(联合循环燃气轮机)电站。利用低成本的天然气,该联合循环电站将生产足 以供给 400 000 个家庭使用的 1 600 MW 电力。

Fluor 已被选择作为该电站的工程、采购和施工的承包者. 预期该项目将在 2019 年以前完成。

M501J 简单循环的技术规范和额定性能:

推出	ISO 基本负荷额	热耗率	效率		流量	涡轮转速	排气温度	大约的重量	大约的尺寸
年份	定功率/kW	kJ/kWh	%	压比	kg/s	r/min	°C		$L\times W\times H/m$
2011	327 000	8 783	41.0	23.0	598.8	3 600	636	317 007	15.2×5.5×5.5

基于 M501J 组成的 MPCP(M501J) 和 MPCP2(M501J) 联合循环的技术规范和额定性能:

刑是	推出	装置净输出	热耗率	装置净	冷凝器压	燃气轮气轮机	汽轮机	燃气轮机数
± 7	年份	功率/kW	kJ/kWh	效率/%	力/mmHg 柱	功率/kW	功率/kW	量和型号
MPCP1(M501J)	2011	470 000	5 855	61.5	38.1	322 000	148 000	$1 \times M501 J$
MPCP2(M501J)	2011	942 900	5 835	61.7	38.1	644 000	298 900	$2 \times M501 J$

(吉桂明 摘译)

Sintering Circular-Cooler Based on Thermodynamic Model [∓J , 汉]SHEN Yong-bing ,LIU Jian-hu ,GAO Yang (Beijing Century Benefits Co. Ltd. ,Beijing ,China ,Post Code: 100036) //Journal of Engineering for Thermal Energy & Power. - 2016 ,31(3). -87 -91

By establishing a heat balance model for sinter cooling with consideration of the air leakage factor getting the flue gas temperature data by ways of the simple thermodynamic measurements and obtaining the fitted curves on the flue gas temperature distribution around the circular-cooler the paper calculated out the air leakage rate. By use of the established calculation model for air leakage rate the paper made the calculation on the air leakage rate for 2 sets of 396 m² sintering circular-cooler of a steel mill compared the calculating results with the available published data and verified the reasonability of the established calculation model for air leakage rate can apply to the estimation of circular-cooler waste heat resource as well as the design of waste heat power generation projects. **Key words**: circular-cooler heat balance air Leakage rate calculation model

油页岩半焦在流化床内的燃烧特性研究 = Study on Combustion Characteristics of Oil Shale Semi-coke in Fluidized Bed [刊 ,汉]HONG Yong ,LU Xiao-feng ,WANG Quan-hai ,YANG Yu (Chongqing University ,Key Laboratory of Education Ministry on Low-grade Energy Utilization Technology and System ,Chongqing ,China ,Post Code: 400044) //Journal of Engineering for Thermal Energy & Power. - 2016 31(3). -92 -96

In order to achieve the combustion of oil shale semi-coke in the bubbling fluidized bed the paper built up a fluidized bed test bench with the furnace size of 150 mm × 150 mm × 2 500 mm and studied combustion characteristics of the oil shale semi-coke as well as the emission characteristics of pollutants in the flue gas. The Study indicates that the semi-coke with low-calorific value can obtain stable combustion in the bubbling fluidized bed. Along with the increase of temperature in dense phase zone flue gas oxygen content and fuel residence time will decrease and emission concentration of SO₂ and NO_x will increase. The flue gas oxygen content and fuel residence period can reach the maximum value as bed height ratio (the ratio of bed height to furnace body height) being of 0. 16. When temperature in dense phase zone rises to 900 °C the carbon contents of fly ash and bottom slag can reach stable values and the concentration of fly ash can get the lowest value. The typical operating conditions for the combustion of bubbling fluidized bed are as follows: the fluidization air temperature is taken as 400 °C, bed height ratio is taken as 0. 16 and the temperature in dense phase zone in furnace is taken as 900 °C. Key words: low-calorific value oil shale semi-coke , bubbling fluidized bed

粒径及孔隙结构对石灰石脱除 CO₂ 能力的影响 = Effects of Particle Size and Pore Structure on the Ability of Limestone Removing CO₂ [刊,汉]LIU Yang ,FEI Hua ,JIANG Da-hua (Jiangxi University of Science and Technology ,Key Laboratory of Jiangxi Province of Institute of Building and Surveying ,Ganzhou ,Jiangxi Province , China ,Post Code: 341000) ,YANG Yong-ping (Energy & power Engineering School of North China Electric Power University ,Beijing ,China ,Post Code: 102206) //Journal of Engineering for Thermal Energy & Power. -2016 ,31 (3). -97 - 102

Under the conditions of the various calcination and carbonation temperature μ calcination and carbonation conversion rates of the limestone with different particle sizes were investigated by the thermogravimetric analyzer in this paper. By ways of the nitrogen adsorption test μ nder the various carbonation conditions μ change rules of the various pore structures were compared in this paper. The test results indicate that the particle size and pore structure have a joint influence on the carbonation conversion rate. The high specific surface area of the calcined limestone samples with micro-structured particle size can make its conversion rate high. With increase of the particle size of the limestone sample the CaO specific surface area decreases and the carbonation conversion rate goes down. The mean particle size of the limestone sample increases as the specific surface area decreases. The CaO with increased particle size can reduce the possibilities of pore block on one hand and can contain more CaCO₃ on the other hand. Thus with the increase of particle size of the limestone sample μ carbonation conversion rate becomes larger on the contrary which can further increase the particle size of the limestone. When larger particle size of the calcined limestone is unable to compensate for the effects of decreased specific surface area μ carbonation conversion rate will decrease. Key words: carbon dioxide (CO₂) chemical reaction absorption gas-solid reaction pore structure

W 型火焰锅炉配风方式对 NO_x 排放和经济性影响的试验研究 = Experimental Research of Influence of Air Distribution Mode for a W-flame Boiler on NO_x Emission and Boiler Economy [刊,汉]WANG Jian-xun, ZHANG Yan-hui XIE Peng-fei (Guodian Science & Technology Research Institute Beijing Electric Research Subinstitute ,Beijing ,China ,Post Code: 100081), WANG Yong-zhao (Guodian Xingyang Coal Electricity Integration Co. ,Ltd ,Xingyang ,Henan Province ,China ,Post Code: 450199) //Journal of Engineering for Thermal Energy & Power. - 2016 ,31(3). - 103 - 106