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Tab. 1 Dimensions of elbow and ribs
d/mm 80 6
L, /mm 800
L, /mm 800
R/mm 120
W/mm 2
H/mm °
10°
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Tab. 2 Experimental parameters
M, /kg 12.358 363 13.126 397
M, /k 12.358 431 13.126 437
19 (kg/m’*s) 2
_ , ) _ i/s 259 200 259 200
Fig. 19 Maximum wear rates of different rib
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ses gradually. A smaller transducer radius results in a larger sound field distribution and descaling scope. As trans—
ducer radius increases the effective descaling scope gradually focuses on the area perpendicular to transducer cen—
ter. When ultrasound transducer radius is S0mm the descaling efficiency at the area perpendicular to transducer ul-

trasound center reaches the maximum of 95.56% . Key words: ultrasonic descaling ultrasound transducer radius

= An Energy-saving Calculation Method Using the Second Law of
Thermodynamics and its Applications ZHOU Shao=xiang KONG Wei-ying LIU Hao( School of Energy
Power and Mechanical Engineering North China Electric Power University Beijing China Post Code: 102206)
LIU Yu-me( Beijing Xing You Engineering Project Management Co. Ltd Beijing China Post Code: 100080) //

Journal of Engineering for Thermal Energy & Power. —2016 31(4) . =12 ~16

In view of the problems related to the energy conservation analysis using the first law of thermodynamics a general
method of energy-saving calculation was deduced based on the second law of thermodynamics in this paper. It was
demonstrated that the energy-saving is essentially proportional to the reduction of the total entropy production from
the improved energy utilization system. Specifically for the thermal power unit the corresponding calculation model
of the total entropy production was given. For an ultra—supercritical unit with constant fuel input the calculation for—
mula of energy-saving through reusing the exhaust waste heat to heat the condensed water was deduced and it fur-
ther showed that the reduction of the total entropy production of the unit is proportional to the reduction of the total
heat loss. It implies that the energy-saving calculation based on the second law of thermodynamics can be made
through comparing the overall thermal balances of the system before and after the energy-saving improvement is ap—
plied. Case analyses have verified the validity and the practicability of the method proposed. Key words: energy—

saving entropy production waste heat utilization fuel specific consumption analysis

90° = Numerical Simulation for Protecting 90° Vertical
Elbows from Erosion in Gas-particle Flow by Adding Ribs GUO Ren-ning ZHAO Li-zhu MA Ye DU-

AN Lede ( Liaoning Technology University Mechanical Engineering Fuxin Liaoning china Post Code: 123000) //
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For the erosion wear problem in the elbow caused by gas-solid flow a wear prevention method was put forward by
adding ribs. A corresponding elbow geometry model was constructed by evenly adding 8 rids of 2 mm height and
numerically simulated by using DPM model to test the wear condition and compare with the common elbow. The
CFD simulation results show that the average and the maximum wear rates of the rib elbow are approximately half of
those in the common elbow indicating the anti-wear effectiveness of rid elbow. Numerical simulations of elbow with
different rib heights were also conducted under the same condition. The comparison of wear rate under different rib
heights shows the best anti-wear rib height is 2 mm. Finally the experiment models of common elbow and rib elbow
with rib height of 2 mm as numerically simulated were manufactured and the wear experiment was carried out. The
experimental results confirm that the average wear rates of the two type ribs under study are similar to simulated im—
plying that the high fidelity and reliability of the numerical simulation for the rib optimization. Key words: erosion

wear common elbow rib elbow wear rate

= Thermodynamic Analysis and Optimization in Double—
pressure Organic Rankine Cycle with a Gasdiquid Separator LIANG Zhi-hui LUO Xiang-ong( School
of Material and Energy Guangdong University of Technology Guangzhou Guangdong China Post Code: 510006)
CHEN Ying MO Song-ping( Soft Matter Center Guangdong Province Key Laboratory on Functional Soft Matter
Guangzhou Guangdong China Post Code: 510006) //Journal of Engineering for Thermal Energy & Power.

-2016 31(4). -24 ~30

Double-pressure organic Rankine cycle with a gasiquid separator ( DSORC) is proposed. Parametric optimization
of DSORC used binary zeotropic mixtures basic organic Rankine cycle ( BORC) used zeotropic mixtures and DS—
ORC used pure fluids is conducted. The second law efficiency maximization is used as objective function. The opti—
mization variables are mixing ratios of zeotropic mixtures evaporating temperature and vapor quality in separator.

And the optimization model is solved using genetic algorithm. The working fluids under study are: R245fa isopen—



