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Tab. 1 Main structural parameters of preswirl inlet cavity K. 2
b /mm 216 o 3 655 297 195 129
a /mm 145
s /mm 11 Cd b °
 fm B Cqy = my/m, (1)
0/(°) 20 . .
. fmm 160 m, — kg/s; m, —
d, /mm 8 kg/so
L /mm 10 3 300
r, /mm 200 o
300 o
2 o 1.2
30()
(z/s =0.5) 30
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Fig. 4 Drag coefficient distribution along

the radial direction( Re, =0.78 x 10°)
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Tab. 2 Comparison of preswirl ratios at different conditions
1 2 3 4 5 6 7 8 9
A 0.127 0.127 0.127 0.235 0.235 0.235 0.369 0.369 0.369
Rew( 109) 0.78 0.97 1.21 0.78 0.96 1.19 0.79 0.97 1.18
B, 0.52 0.48 0.48 0.96 0.96 0.95 1.49 1.37 1.41
B 0.31 0.29 0.30 0.44 0.45 0.43 0.65 0.61 0.61
B./B, 0.60 0.60 0.63 0.46 0.47 0.46 0.44 0.45 0.43
S B (0.8 <r/b <0.97 ) o
6 3 o
Ty
Bl“a)\
Bmin ° 6( b) A 6( C) Bp = 1 Bmax >
Bp = 1 ' Bmin
o 6 B
¢
p 2
& =(p-p)/(0.5p e *r) (9)
p, —1 °
7 & r
Ap
B, = 0.5
1.1 mmo, B, =1.0
0.8 mmo. B, =1 5
0.5 mmo,
8
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Fig. 6 Swirl ratio distribution along the
radial direction( Re, =0.78 x 10°)
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Fig. 7 & distribution along the circumferential
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Fig.9 Variation of swirl ratio at the split plane
with inlet preswirl ratio (1 and 2 stands for inlet
and outlet height positions)
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Fig. 10 Relative rotational disc non-dimensional total

temperature contours in the outside of rotational

disc boundary layer
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Fig. 11 Nu contours on the rotational disc wall
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centrifugal compressor secondary flow back-sweptness shock wave

NO,, = Numerical Simulation of NO,. Formation in a Heavy Du—
ty Gas Turbine Annular Combustion Chamber FU Zhong-guang SHI Li LIU Bing-han SHEN Ya-zhou
( Key Laboratory of Condition Monitoring and Control for Power Plant Equipment ( North China Electric Power Uni—
versity) Ministry of Education Changping District Beijing China Post Code: 102206) // Journal of Engineering

for Thermal Energy & Power. —2016 31(4). -52 ~58

The NO, emission characteristic of an annular combustion chamber in a heavy duty gas turbine is numerically stud—
ied using a validated model. The predicted results show that there are two main convergent flow regions with oppo—
site revolving direction near the nozzle and two convergent flow regions after boss in the annular combustion cham—
ber. The formation rate of thermal NO, is lower in the region of main convergent flow due to relatively lower tem-
perature in those regions which is approximately 1 600 ~1 700 K. However the temperature in convergent flow re—
gions after boss is over 1 900 K and thus greatly enhance thermal NO, formation rate. The OH mole fraction and
thermal NO, formation rate in the flow regions near the crust are relatively higher due to higher temperature in this

region. Key words: gas turbine annular combustion chamber NO, formation numerical simulation

= Numerical Investigations on the Flow and Heat
Transfer Characteristics of the Rotor Stator System with Circle Pre-swirl Nozzles CHEN Shu—=ian
GAO Tieyu LI Jun( School of Energy & Power Engineering Xi‘an Jiaotong University Xi‘an China Post Code:

710049) //Journal of Engineering for Thermal Energy & Power. —2016 31(4). —59 ~66

The flow and heat transfer characteristics of the rotor stator cavity with circle pre-swirl nozzle structures was numeri—
cally investigated using three-dimensional Reynolds-Averaged Navier-Stokes ( RANS) and SST turbulence model.
The numerical drag coefficient and Nu coefficient distributions in the rotor stator cavity agreed well with the experi—

mental data. The reliability of the utilized numerical method was also demonstrated. Three different turbulent flow
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parameters and pre-swirl ratios were used to analyze the flow and heat transfer performance of the rotor stator system
with circle pre-swirl nozzles. The obtained results show as the turbulent flow parameter increases swirl ratio static
pressure coefficient and the heat transfer on the rotating disc increase and vary apparently along the circumference
because of the impingement of the pre-swirl flow. The drag coefficient is gradually increasing along the radial direc—
tion due to the influence of the rotary pump and the non-uniformity along the circumferential direction at the inlet
and outlet position is observed due to the inlet pre-swirl flow influence. The rotational disc does work on the flow
and increases the total temperature at the low pre-swirl inlet flow condition. The total temperature of the fluid is rel-
ative low at the pre-swirl ratio 1.5 because the rotational disc does not do work on the airflow or drive the flow rota-
tion. The inlet flow impinges on the rotational disc and results in the non-uniformity distribution of the Nu along the
circumferential direction. This flow behavior leads to the high heat transfer region on the rotational disc surface.

Key words: rotor stator cavity pre-swirl nozzle flow and heat transfer numerical simulation

= Large Eddy Simulation of Combustion Instabilities in a Par—
tially Premixed Swirl Stabilized Flame LIU WeiHie GE Bing ZANG Shu-sheng WENG Shidie ( Key
Laboratory for Power Machinery and Engineering of Ministry of Education School of Mechanical Engineering Shang—
hai Jiao Tong University Shanghai China Post Code: 200240) // Journal of Engineering for Thermal Energy &

Power. —2016 31(4). —67 ~73

Large eddy simulation ( LES) of a methane/air partially premixed swirl stabilized flame is carried out to investigate
combustion instabilities in a gas turbine model combustor. The finite—rate chemistry model with a two-step simplified
reaction mechanism is used to simulate the turbulent combustion. The subgrid—scale turbulent stress is modeled u-
sing WALE eddy-viscosity model. Numerical results show that the parameters in terms of pressure velocity and
mixture fraction and heat release rate in the combustor oscillate at the same frequency. The main frequency of com—
bustion oscillation is 517 Hz and the relative amplitude of pressure fluctuation is 2. 9% . Combustion instabilities
lead to flame flashback into the nozzle at a certain time during the oscillation period. Vortex generation and shed-

ding off in the outer shear layer result in unsteady heat release fluctuation meanwhile heat release feeds back to the



