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parameters and pre-swirl ratios were used to analyze the flow and heat transfer performance of the rotor stator system
with circle pre-swirl nozzles. The obtained results show as the turbulent flow parameter increases swirl ratio static
pressure coefficient and the heat transfer on the rotating disc increase and vary apparently along the circumference
because of the impingement of the pre-swirl flow. The drag coefficient is gradually increasing along the radial direc—
tion due to the influence of the rotary pump and the non-uniformity along the circumferential direction at the inlet
and outlet position is observed due to the inlet pre-swirl flow influence. The rotational disc does work on the flow
and increases the total temperature at the low pre-swirl inlet flow condition. The total temperature of the fluid is rel-
ative low at the pre-swirl ratio 1.5 because the rotational disc does not do work on the airflow or drive the flow rota-
tion. The inlet flow impinges on the rotational disc and results in the non-uniformity distribution of the Nu along the
circumferential direction. This flow behavior leads to the high heat transfer region on the rotational disc surface.

Key words: rotor stator cavity pre-swirl nozzle flow and heat transfer numerical simulation

= Large Eddy Simulation of Combustion Instabilities in a Par—
tially Premixed Swirl Stabilized Flame LIU WeiHie GE Bing ZANG Shu-sheng WENG Shidie ( Key
Laboratory for Power Machinery and Engineering of Ministry of Education School of Mechanical Engineering Shang—
hai Jiao Tong University Shanghai China Post Code: 200240) // Journal of Engineering for Thermal Energy &

Power. —2016 31(4). —67 ~73

Large eddy simulation ( LES) of a methane/air partially premixed swirl stabilized flame is carried out to investigate
combustion instabilities in a gas turbine model combustor. The finite—rate chemistry model with a two-step simplified
reaction mechanism is used to simulate the turbulent combustion. The subgrid—scale turbulent stress is modeled u-
sing WALE eddy-viscosity model. Numerical results show that the parameters in terms of pressure velocity and
mixture fraction and heat release rate in the combustor oscillate at the same frequency. The main frequency of com—
bustion oscillation is 517 Hz and the relative amplitude of pressure fluctuation is 2. 9% . Combustion instabilities
lead to flame flashback into the nozzle at a certain time during the oscillation period. Vortex generation and shed-

ding off in the outer shear layer result in unsteady heat release fluctuation meanwhile heat release feeds back to the
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flow field which is the main reason causing combustion instabilities. Key words: swirl stabilized flame partially

premixed combustion instabilities large eddy simulation vortex-flame interactions Rayleigh index

= Experimental Study on the Atomization Characteristics of Pres—
sure Nozzle ZHANG Liang LU Zhen-hua ( Shanghai Jiaotong University Key Laboratory for Power Machin—
ery and Engineering of Ministry of Education Shanghai China Post Code: 200240) Liu Yu-feng ( Systems Engi-
neering Research Institute Beijing China Post Code: 100036) // Journal of Engineering for Thermal Energy &

Power. —2016 31(4). -74 ~78

In this paper a test facility is designed such that it can provide a stable backpressure for the spray nozzle and is also
equipped with the date collection and measurement system. And a study on the spray atomization characteristics of
a pressure nozzle is performed by using this test facility. The nozzle flow coefficient is obtained with a flow meter.

The experimental results show that the atomization angle will decrease when the backpressure increases and eventu—
ally approaches a stable value. Near the nozzle the diameter of droplets decreases with the backpressure under the
same pressure difference. Away from the nozzle the droplet diameter increases with the backpressure. With the
backpressure less than 3 bar the average droplet diameter changes evidently with pressure difference. However the
droplet diameter change is not remarkable with pressure difference when it reaches 4 bar. Key words: backpres—

sure pressure difference mass flow atomization angle average diameter

CFB = Experimental Study on Self-desulfurization Performance
of Blending the Gangue Coal with High Calcium in CFB Boiler LIU Bo ZHENG Wen-guang ZHANG
Xin ( China Huadian Electric Power Research Institute Hangzhou China Post Code: 310030) // Journal of Engi-

neering for Thermal Energy & Power. —2016 31(4). -79 ~83

Experimental study on the self-desulfurization performance of gangue coal mixed with different proportions and the

desulfurization performance in conditions of furnace sorbent injection was carried out by a power plant to investigate



