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guo ( College of Energy Source and Power Engineering Northeast University of Electric Power Jilin China Post

Code: 132012) //Journal of Engineering for Thermal Energy & Power. —2016 31(5). -54 ~60

With air and water serving as the gas-iquid two-phase flow working media and by using a Y type mixer having an
angle of 90 degrees a visualization experiment was performed by employing a high-speed video camera inside a
snake-shaped micro—channel with a rectangular cross section of 800pum x 100pm. Through changing the gasdiquid
two—phase flow rate some special flow patterns different from those in a straight micro-channel were observed in the
section b and ¢ along the micro-channel. The length of the air bubble in an air bubble flow was analyzed and a new
correlation formula was proposed. For a halberd-shaped slug flow the relationship between the length/width ratio
and the number of capillary was analyzed and the test results of the length of the gas halberd and liquid film thick-
ness were compared with those obtained by using the currently available correlation formulae in the literatures. It has
been found that the prediction accuracy by using the formulae proposed by Qian and Quere is relatively good. More—
over due to the action of the shearing and centripetal force exerted by the snake-shaped tube the transition of the
air halberd at the elbow II is found to have the following three modes: expansion and elongation shearing induction
and direct transition. Key words: snake-shaped micro-channel flow pattern air bubble length liquid<film thick—

ness length and width ratio

Jet — A = Study of the Simplification of the Mechanism
Governing the Combustion Reaction of Jet-A Fuel Based on the Analytic Method WANG Wei LIU
Shuai BAI Jie ( Key Laboratory on Civil Aircraft Airworthiness and Maintenance Civil Aviation University of Chi-
na Tianjin China Post Code: 300300) //Journal of Engineering for Thermal Energy & Power. —2016 31(5).

-61 ~67

The coupling path flux analytic method and sensitivity one were chosen to simplify the combustion reaction mecha—
nism of Jet-A type aero-kerosene under the operating conditions of the combustor of an aero-engine. The combustion
reaction mechanism of POSF-4658 ( involving 1607 components and 6633 reactions) was selected to substitute the
detailed combustion reaction mechanism of Jet-A type aero-kerosene under the operating conditions of the combustor
of an aero-engine. With the operating conditions of the combustor serving as the initial conditions for the simplifica—
tion process a mechanism ( involving 122 components and 331 reactions) simplified for substituting that of the Jet—
A type aero-kerosene was obtained through an analysis. By analyzing and comparing the reaction mechanism simpli—

fied for substituting that of the Jet-A type aero-kerosene a detailed reaction mechanism of Jet-A type aero-kerosene
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C,3H,, reaction mechanism and the five-step reaction mechanism with the test values it can be found that the reac—
tion mechanism simplified for substituting that of the Jet-A type aerokerosene can reflect the main combustion char—
acteristics of the Jet-A type fuel. The adiabatic flame temperature ignition delaying time and laminar flow flame
speed calculated by using the worldwide commonly used Jet-A reaction mechanism were compared with the values
calculated by using the simplified reaction mechanism proposed by the authors. It has been found that the simplified
reaction mechanism under discussion enjoys a relatively high precision and the average relative errors of such pa-
rameters as the ignition delaying time adiabatic flame temperature and laminar flow flame speed calculated by using
the simplified reaction mechanism and those calculated by using the detailed reaction mechanism are 1.2% 3.3%
and 3.7% respectively. The reaction mechanism simplified for substituting that of the Jet-A type aero-kerosene can
provide a chemical reaction kinetic model for simulating combustors in aero-engines. Key words: combustor Jet-A

mechanism simplification path flux analysis sensitivity analysis

Ni-P = Influence of the Coat Chemically Plated With Ni-P Al-
loy on Iron Bacteriaformed Microbe Fouls LIU Zuo-dong ( College of Energy Source Power and Me—
chanical Engineering North China University of Electric Power Beijing China Post Code: 102206) YAO Xiang
BAI Wen-yu XU Zhi-ming ( College of Energy Source and Power Engineering Northeast University of Electric Pow—
er Jilin China Post Code: 132012) //Journal of Engineering for Thermal Energy & Power -2016 31(5). —68 ~

75

The influence of the coat chemically plated with Ni-P alloy on the microbe fouls commonly seen on the surface of
heat exchange equipment items was investigated in order to expand the scope of applications of chemically-plated
coats First various kinds of the coat surfaces with various characteristics were prepared by adjusting the chemical
plating solution process with the influence of the lactic acid concentration on the plating speed and the surface ener—
gy being studied. Afterwards a 5 —7 day still-keeping test of the microbe fouls was conducted and their macroscopic
and microscopic morphology of the coat surfaces before and after the test were analyzed. In addition the correlation
between the surface energy and the surface weight loss of the samples was studied. In the scope of the process under
the test both the plating speed and the surface energy of the samples will decrease with an increase of the lactic
acid content. Upon the completion of the still-keeping test the bacteria fouls attached to the surface of the common
carbon steel sample was relatively excessive and in a life cycle of the microbe the mass subject to the microbe ero—
sion on the surface of carbon steel assumed a gradual descending tendency however the surface of the coat plated

still shined a kind of metal luster and no big change in the mass occurred. The microscopic morphology of the coat



