文章编号:1001-2060(2016)06-0035-07

入口压力对某环形燃烧室内燃烧及 NO_x 生成的影响

付忠广 石 黎 刘炳含 沈亚洲

(华北电力大学 电站设备状态监测与控制教育部重点实验室 北京 102206)

摘 要: 通过数值模拟方法研究了燃烧室入口压力 P 对某环 形燃烧室内的燃烧及热力型 NO_x生成特性的影响。分析表 明: 增大入口压力 P 使得流体密度 ρ 增大 流速 U 减小; 回流 区范围减小 ,火焰温度 T 有所降低 高温区范围缩小; 主燃级 O 原子摩尔浓度升高 ,热力型 NO_x生成速率增大。热力型 NO_x生成速率最大的区域位于凸台后回流区附近 ,火焰温度 T 的降低在一定程度上抑制了该区域热力型 NO_x生成速率 的增长。不同入口压力 P 条件下 ,外壳侧 NO_x生成速率均 高于轮毂侧。

关 键 词: 燃气轮机; 环形燃烧室; 入口压力; 回流区

中图分类号: TK47 文献标识码: A

DOI: 10. 16146/j. cnki. rndlgc. 2016. 06. 006

引 言

燃气初温 T_3 以及压比 π 是表征燃气轮机热效 率 η 的主要参数^[1-3]; 提高燃气初温 T_3 受到高温部 件如燃气透平动、静叶片,喷嘴和燃烧室等强度以及 污染物排放的限制^[1-2]; 采用多级轴流压气机提高 压比 π 及流量 q 是重型燃气轮机重要的发展方 向^[3]; 表 1 给出了重型燃气轮机典型型号的技术参 数,由表 1 可知,当代 F 级重型燃气轮机的压比 π 约为 15~19,单循环效率 η 达到 38% 左右,先进的 G/H/J 级重型燃机的压比 π 提高至 19~25,单循环 效率 η 可达 40%~41% ^[4~5]。

压力 *P* 对燃烧室内热力型 NO_x 排放具有重要 的影响,其影响规律与值班燃料比、燃料种类以及化 学当量比 Φ 等因素密切相关^[1-3]; 邢双喜等研究了 值班燃料比和压力 *P* 对燃烧室内动态和污染物排 放特性的影响^[6]; 研究表明,随着值班燃料比的提 高 压力 P 对 NO_x 排放的影响变得明显。对于采用 常规空气雾化喷嘴喷射燃料的航空燃气轮机燃烧 室,NO_x排放浓度正比于 Pⁿ,不同型号燃气轮机压 力 P 的幂指数 n 不同^[3]; GE 公司的研究表明 压力 P的幂指数 n = 0.37 P&W 公司的研究表明 压力 P 的幂指数 *n* = 0.5^[3]; Lefebvre 等整理出一个适用于 8种 GE 和 P&W 公司燃气轮机燃烧室的经验公 式^[7],该公式中,压力P的幂指数n = 0.5。对于预 混燃烧,不同化学当量比 Φ 条件下,压力P的幂指 数 n 处于 -0.77 ~0.61 之间^[3],当化学当量比 Φ > 0.5 时 压力 P 越高 NO_x 排放浓度越大^[9]; Bengtsson 等研究了停留时间和压力 P 对燃烧室内 NO_x 及 CO 排放浓度的影响^[8],研究表明,当0.4 MPa≤P≤2.0 MPa 时 压力 P 的幂指数 n < 0; Dong 等研究了化学 当量比 Φ 和压力 P 对 ALSTOM GT11N 燃气轮机燃 烧室内热力型 NO_x 生成的影响^[9] 研究表明 压力 P 的幂指数 n = 0.5。然而,一些研究却得出明显不同 的规律 Miller 等对采用实验方法研究了压力 P 对 CH_4 /空气同轴射流燃烧 NO_x 排放的影响^[10~11],研 究表明 NOx 排放浓度随着压力 P 升高先增后减 排 放浓度最大值对应的压力 P = 0.8 MPa。覃建果等 的数值研究也得出了相同结论[11]。综上所述 压力 P 对 NO_x 排放的影响规律复杂 仍需进一步研究。

某重型燃气轮机压比 $\pi = 17.9^{[12]}$,100% 负荷 下 燃料的质量流量 $q_m = 15.0 \text{ kg} \cdot \text{s}^{-1}$,值班燃料比 约为 6%,预混燃料化学当量比 $\Phi = 0.53^{[12-15]}$ 。本 研究采用数值模拟的方法,研究了燃烧室入口压力 *P* 对该环形燃烧室内流动、燃烧及热力型 NO_x 生成 的影响规律。

收稿日期: 2015 - 07 - 20; 修订日期: 2015 - 09 - 15

基金项目:中央高校基本科研业务费专项资金资助项目(2014ZZD04;2014XS17) 作者简介:付忠广(1963-),男,河北邢台人,华北电力大学教授.

表1 重型燃气轮机典型型号^[3~4]

Tab. 1 Typical heavy duty gas turbines^[3-4]

厂家	燃机型号	等级	单循环	燃气	
			效率/%	温度/℃	压比
西门子	SGT5 – 4000F	F级	39.8	1 440	17.9
	SGT5 – 8000H	Η级	40	1 550	19.2
GE	9HA.02	Η级	41.5	-	21.8
三菱	M501G	G 级	38.7	1 500	19.2
	M701G	G 级	39.5	1 500	19.0
	M701G2	G 级	-	1 500	21.0
	M501H	Η级	-	1 500	25.0
	M501J	J级	-	1 600	23.0

2 数学模型和计算方法

2.1 研究对象

该混合型 DLN(干式低 NO_x燃烧器) 结构如图 1 所示。根据负荷的不同,可采用扩散燃烧、扩散燃烧与预混燃烧同时并行以及预混燃烧等三种燃烧方 式运行^[12];燃料通道包括预混通道、扩散通道或值 班通道^[13]。100%负荷下,约6%的燃料经由值班通 道喷入燃烧室,值班火焰采用扩散燃烧方式,以稳定 燃烧^[14];超过 90%的空气及燃料充分混合形成稀 薄均相预混燃料^[14];稀薄均相预混燃烧通过降低燃 烧温度控制热力型 NO_x的排放^[12~14]。环形燃烧室 由轮彀、外壳两部分构成^[14~15];最突出的优点在于 可有效降低火焰筒的冷却空气量,使得更多的冷却 空气用来冷却高温的燃气透平,并使机组整体结构 紧凑化^[13]。

2.2 网格划分

网格划分质量将直接影响求解速度、收敛性和 数值解的精度^[15~16]。本研究采用前处理软件 Gambit 进行建模及网格划分。计算域包含一个干式低 NO_x(DLN)燃烧器以及环形燃烧室的 1/24 扇形区 域,即该燃烧器的工作区域^[16-18];针对燃烧器及环 形燃烧室的结构特点,采用分块网格划分的方法进 行网格划分,以提高网格生成质量和效率^[17];采用 六面体网格,以控制和调整火焰所在空间及相关区 域的网格密度^[19-20];正式计算之前,进行了网格无 关性验证,对计算模型进行网格加密,直到最新加密 网格的结果与前一次网格加密的结果一样时为 止^[17],最终计算模型包含有约90 W 网格,网格划分 如图 2 所示。

图1 燃烧器示意图^[12]

图 2 网格划分示意图 Fig. 2 Schematic diagram of mesh generation

2.3 计算工况和边界条件设置

为了研究燃烧室入口压力 *P* 对燃烧室内流动、 燃烧及热力型 NO_x生成的影响,选取入口压力 *P* 为 1.77、1.90、2.08、2.28 及 2.48 MPa 的 5 个工况进 行数值计算,不同压力 *P* 对应的燃气轮机型号如表 1 所示(各工况进气道压损率 $\varepsilon_c = 1\%$)。入口压力 *P* = 1.77 MPa(压比 $\pi = 17.9$)的工况为基准工况, 不同计算工况下,燃料及空气的消耗量与基准工况 保持一致。单个燃烧器消耗燃料的质量流量 $q_m =$ 0.625 kg/s^[13];值班燃料比为 6%,值班级化学当量 比 $\Phi_1 = 0.36$,主燃级化学当量比 $\Phi_2 = 0.53^{[15]}$,燃 料与空气的温度均为 10 °C,此外,燃烧室压损率 ε_b = 3% ^[1~3]; 燃烧室入口主要包含值班燃料入口、空 气入口以及预混燃料入口,各入口均设为质量入口, 给定入口的质量流量 q_m 、温度 T、湍流强度 I、水力直 径 D 及平均混合分数^[16~18]; 燃烧室出口截面均设 为压力出口,给定出口压力 P、回流温度 T、湍流强 度 I 和水力直径 $D^{[16~18]}$; 燃烧室及喷嘴管路壁面均 设为无滑移绝热壁面,采用壁面函数处理近壁面流 动^[18]; 计算域的两个轴向边界设为周期性边界 条件^[19~20]。

2.4 数学模型

采用流体力学计算软件为 Fluent 进行湍流燃烧 计算,基于 RANS(雷诺时均方程) 求解的可压缩湍 流燃烧^[16];基于密度法求解器求解可压缩流动^[17]; 基于重整化群 $k - \varepsilon$ (RNG $k - \varepsilon$) 湍流模型求解强湍 流^[18];压力 – 速度耦合采用 SIMPLE 算法^[19];基于 EDC(涡团耗散) 概念结合阿伦尼乌斯公式求解 CH₄ 燃烧反应^[20],化学反应速率公式如式(1) 所示,该 公式考虑了压力 *P* 对化学反应速率 R_i 的影响。CH₄ 燃烧反应包含有 53 种组分和 325 个基元反应^[20]。 受制于计算条件及燃烧模型,采用简化后的 CH₄基 元反应机理,基元反应如式(2) ~式(5) 所示。

- $R_i = AT^{\beta} \exp(-E_a/R_m T) (P/R_m T)^{v} \prod i C i^{a_i} (1)$
- $[CH_4]^{0.5} + [0.5O_2]^{1.25} \rightarrow CO + 2H_2$ (2)
- $[H_2]^{0.25} + [0.5O_2]^{1.25} \rightarrow H_2O$ (3)
- $[CH_4] + [H_2O] \hookrightarrow CO + 3H_2$ (4)
- $[CO] + [H_2O] \subseteq CO_2 + H_2$ (5)

式中: R_i 一反应速率 ,mol/L•s; A—指前因子; β —温 度指数; E/R_m —活化温度 ,K; ν 一反应级数; C_i 一反 应物摩尔浓度 ,kmol/m³; α_i —相应压力 P 的幂指数。

热力型 NO_x由 N 与 O 在高温燃烧环境下生成, 其生成速率与温度 T_x 在高温区停留时间以及 O₂分 压密切有关,通常用泽尔道维奇机理计算其生成速 率。基元反应如式(6) ~式(8) 所示,生成速率如式 (9) 所示。利用局部平衡方法可求得式(6)、式(8) 中 O 及 OH 的摩尔浓度。

$$[O] + [N_2] \stackrel{\scriptstyle{\leftarrow}}{\hookrightarrow} N + NO \tag{6}$$

- $[N] + [O_2] \leq O + NO \tag{7}$
- $[N] + [OH] \rightrightarrows H + NO$ (8)

 $\frac{d\left[\text{NO}\right]}{dt} = 2k\left[\text{O}\right]\left[\text{N}_{2}\right]$ (9)

$$[O] = 36.63T^{0.5} [O_2]^{0.5} e^{-27123/T}$$
(10)
$$[OH] = 2.129 \times 10^2 T^{0.57} e^{-4595/T}$$
$$[O]^{0.5} [H_2 O]^{0.5}$$
(11)

3 结果与分析

3.1 入口压力 P 对流动的影响

为了使燃烧室入口压力 *P* 的影响规律更为明 显 本研究选取入口压力 *P* 为 1.77、2.48 MPa 的两 个计算工况进行对比分析。图 3 给出了不同入口压 力 *P* 条件下 燃烧器中心截面的流速分布。由图 3 可知 /值班级旋流及主旋流的相互作用形成稳定的 中心回流区 在燃烧室的凸台附近区域形成凸台后 回流区。回流区的存在延长了反应物质在燃烧室内 的停留时间 ,为燃料的完全燃烧提供了良好的基 础^[1~3]。增大入口压力 *P* 使得气流密度 ρ 增大 ,流 速 *U* 降低 ,回流区的范围缩小。

图 5 给出了燃烧器中心截面上不同特征直线上 轴向速度分布(特征直线的位置如图 4 所示,相邻 直线之间的距离为轴向旋流器喷口半径 *R*)。由图 5 可知,高速旋转气流层扩张产生的抽吸作用,使得 截面中心(y=0 m)附近出现负速度区域(轴向速度 明旋转气流层的范围随流动距离的增加而扩大。壁 面附近区域,再次出现负速度区域,该区域即为凸台 后回流区。增大入口压力*P*使得峰值速度*U*_m降低, 中心回流区及凸台后回流区范围缩小。

图 4 燃烧器中心截面特征直线位置

Fig. 4 Location of feature lines in central

cross section of combustor

3.2 入口压力 P 对温度分布的影响

图 6 给出了不同入口压力 *P* 条件下,燃烧器 中心截面的温度分布,由图 6 可知,由于值班级化学 当量比 *Φ*₁较小,伴流空气的稀释作用降低了值班 扩散火焰温度 *T*。由于凸台后回流区的存在,主燃 级火焰温度 T 明显高于值班级。增大入口压力 *P* 使得回流区火焰温度 T 降低、高温区范围有所 减小。

图 7 给出了燃烧器中心截面上不同位置上火焰 温度分布。

由图 7 可知,不同入口压力 P 压力下,温度分 布规律相似。导致该现象的原因在于:(1) 燃气轮 机燃烧室具有高燃烧热强度的特点,该型燃烧室采 取了多种强化燃烧的手段提高了燃料燃烧速度、缩 短火焰长度,从而确保了燃料的燃烧的迅速着火及 燃烧完全; (2) CH_4 是一种易燃物质,引燃温度仅为 538 KJ/mol,而燃烧热则高达 890.31 KJ/mol, CH_4 在 燃烧室内得以迅速着火并释放大量热量,因此,提高 进气压力 P 对燃烧室内温度场的影响相对较小。 由图 7 又可知,截面中心(y = 0 m) 附近火焰温度 T较低,峰值温度 T_m 位于凸台后回流区附近,增大入 口压力 P 使得凸台后回流区附近火焰温度 T 有所 降低,峰值温度 T_m 的平均降幅超过 15 K。跟据 Zeldovich 机理,值班级火焰峰值温度 $T_m < 1$ 800 K,而 主燃级火焰峰值温度 $T_m > 1$ 900 K,因此,燃烧室内 生成的热力型 NO_x 主要来自于主燃级。

3.3 入口压力 P 对 NO_x 排放的影响

文献 [14] 中给出了燃料预热温度 *T* 约为 10、 180 及 200 ℃时,该型燃气轮机 NO_x的实际排放浓 度; 文献 [14] 中同时给出了不同燃料预热温度条件 下 CHEMKIN 软件的计算结果,由于计算方法完全 不同,参考意义不大,本研究仅将计算结果与该文献 中的实验结果进行对比,以验证 Fluent 软件计算的 合理性。燃料预热温度约为 10 ℃时,单个燃烧器消 耗燃料的质量流量 $q_m = 0.625 \text{ kg/s}^{[13]}$ 。数值计算 过程中,输入燃烧室的热量 Q_r 保持不变,即燃料的 质量流量 q_m 随着燃料预热温度 *T* 的升高而减小。 图 8 给出了燃烧室出口 NO_x排放浓度随燃料预热 温度 *T* 的变化关系,由图 8 可知,计算结果较好地反 映了 NO_x排放浓度随预热温度 *T* 的变化趋势,最大 误差小于 4%,计算结果较为合理。

图 9 给出了燃烧室出口 NO_x 排放浓度随入口 压力 P 的变化关系,由图 9 可知,工况 1 中, NO_x 排放浓度为 53.4 mg/m³(15% O₂),与文献 [14]中 实际测量值的误差仅为 2.02%,计算结果较为合 理。燃烧室出口 NO_x 排放浓度随入口压力 P 的 增大而减小,压力 P 的幂指数 $n \approx 0.45$,计算结果较 好地反映了 NO_x 排放浓度随入口压力 P 的变化 趋势。

图 10 给出了燃烧器中心截面的热力型 NO_x 生 成速率分布,由图 10 可知,热力型 NO_x 与燃烧室内 温度 T 分布密切相关,由于火焰峰值温度 T_m < 1 800 K,值班级热力型 NO_x 生成速率很低。主燃级 热力型 NO_x 生成速率则相对较高,热力型 NO_x 生成 速率最大的区域位于凸台后回流区附近,增大入口 压力 P 使得 NO_x生成速率升高。不同入口压力 P 条件下,外壳侧热力型 NO_x生成速率明显高于轮 毂侧。

图 8 燃料预热温度 T 对 NO_x 排放的影响

 NO_{χ} emission

图9 压力 P 对 NO_x 排放的影响

Fig. 9 Effects of inlet pressure on NO_x emission

Zeldovich 机理认为 O_2 高温热分解所产生的 O 原子引发了 NO_x 的生成链锁反应^[11]。由于反应物 摩尔浓度正比于压力 *P*,因此,火焰中 O 原子摩尔浓 度正比于 $P^{0.5}T^{0.5}$ 式(10)。图 11 给出了燃烧器中 心截面上不同特征直线上 O 原子摩尔浓度分布,由 图 11 可知,凸台后回流区 O 原子浓度最高,增大入 口压力 *P* 使得 O 原子摩尔浓度增大。由于温度 *T* 分布不均,不同入口压力 *P* 条件下,外壳侧 O 原子 摩尔浓度均明显高于轮毂侧。

图 10 燃烧器中心截面热力型 NO_x

生成速率云图/kmol • $m^{-3} \cdot s^{-1}$

Fig. 10 Thermal NO_{χ} formation rate distribution in central cross section of combustor/kmol • m⁻³ • s⁻¹

图 12 给出了燃烧器中心截面上不同特征直线 上热力型 NO_x生成速率分布,由图 12 可知,燃气轮 机排放的 NO_x主要来自于主燃级,热力型 NO_x生成 速率最大的区域位于凸台后回流区附近。对比图 10 与图 11 可知,增大入口压力 *P* 使得凸台后回流 区附近 0 原子摩尔浓度增大,热力型 NO_x生成速率 随之增大。对比图 6 与图 11 可知,回流区附近峰值 温度 T_m降低、高温区范围的缩小在一定程度上抑制 了热力型 NO_x生成速率的增长。

different feature lines

4 结 论

通过数值模拟方法研究了燃烧室入口压力 *P* 对某环形燃烧室内的燃烧及热力型 NO_x生成特性 的影响 *得*出了以下结论:

(1) 增大燃烧室入口压力 P 使得流体密度 ρ 增
 大 流速 U 减小 ,回流区范围减小 ,回流区火焰温度
 T 降低、高温区范围缩小;

(2) 增大燃烧室入口压力 P 使得主燃级 O 原子摩尔浓度增大,热力型 NO_x生成速率随之增大;

(3) 热力型 NO_x生成速率最大的区域位于凸 台后回流区附近,该区域火焰温度 T 降低在一定程 度上抑制了热力型 NO_x生成速率的增长;

(4) 不同燃烧室入口压力 P 条件下,外壳侧回 流区 O 原子摩尔浓度及热力型 NO_x生成速率均高 于轮毂侧。

参考文献:

 [1] 付忠广 涨 辉. 电厂燃气轮机概论 [M]. 北京: 机械工业出版 社 2014: 14 - 15.

FU Zhong-guang ZHANG Hui. Introduction to power plant gas turbine [M]. Beijing: China Machine Press 2014: 14 – 15.

- [2] 焦树建,孙守林 涨艳春等. 燃气轮机与燃气-蒸汽联合循环装置[M].北京:中国电力出版社 2007:17-22.
 JIAO Shu-jian ,SUN Shou-lin ,ZHANG Yan-chun ,et al. Gas turbine and gas-steam combined cycle unit [M]. Beijing: China Electric Power Press 2007:17-22.
 [3] 姚秀平,齐 进涨 莉等.燃气轮机与联合循环[M].北京:
- 中国电力出版社 2010:34 44. YAO Xiu-ping ,QI Jin ZHANG Li ,et al. Gas turbine and combined cycle[M]. Beijing: China Electric Power Press 2010:34 – 44.
- [4] 蒋洪德 任静,李雪英等. 重型燃气轮机现状与发展趋势[J].
 中国电机工程学报 2014 34(29):5096-5102.
 JIANG Hong-de REN Jing LI Xue-ying et al. Status and development trend of the heavy duty gas turbine [J]. Proceedings of the CSEE 2014 34(29):5096-5102.
- [5] 蒋洪德. 加速推进重型燃气轮机核心技术研究开发和国产化
 [J]. 动力工程学报 2011 31(8):563-566.
 JIANG Hong-de. Promote heavy duty gas turbine core technology development and industrial application in china [J]. Journal of Chinese Society of Power Engineering 2011 31(8):563-566.
- [6] 邢双喜,房爰兵,崔玉峰等. 燃料供给方式给稀态预混燃烧特性的影响[J]. 工程热物理学报 2014 35(6):1210-1215.
 XING Shuang-xi, FANG Ai-bing, CUI Yu-feng, et al. Influence of fuel supply manners on characteristics of lean premixed combustion
 [J]. Journal of Chinese Engineering Thermophysics 2014 35(6): 1210-1215.
- [7] Lefebver A H. Fuel effects on gas turbine combustion liner temperature pattern factor and pollutant emission [J]. AIAA Journal of Aircraft ,1984 ,124(11): 887 - 898.
- [8] K. U. M. Bengtsson P. Benz ,R. Schaeren ,et al. NyOx formation in lean premixed combustion of methane in a high-pressure jet-stirred reactor [J]. Proc. Combust. Inst. . 1998 27: 1393 – 1401.
- [9] DONGSik Han ,GYU Bo Kim ,HAN Suk Kim ,et al. Experimental study of NOx correlation for fuel staged combustion using lab-scale gas turbine combustor at high pressure [J]. Experimental Thermal and Fluid Science 2013 58:62 - 68.
- [10] Miller I M Maahs H G. NO_x formation in high-pressure jet-stirred reactors with significance to lean-premixed combustion turbines [R]. NASA Technical Paper TND – 8407, 1977.
- [11] 覃建果 魏小林,郭啸峰,等. 甲烷高压富氧燃烧层流扩散火 焰的数值研究[J]. 燃烧科学与技术 2013,19(5):425-433. TAN Jian-guo, WEI Xiao-lin, GUO Xiao-feng, et al. Numerical study on oxygen enhanced axisymmetric laminar methane diffusion flames at high pressure [J]. Journal of Combustion Science and Technology 2013,19(5):425-433.
- [12] HolgerStreb ,Bernd Prade ,Thomas Hahner ,et al. Advanced burn-

er development for the VX4. 3A gas turbines[C]// ASME Turbo Expo 2001: Power for Land Sea and Air ,New Orleans ,Germany , 2001.

- [13] O. RDarbyshire ,C. W Wilson ,A. Evans ,et al. CFD based analysis of burner fuel air mixing over a range of air inlet and fuel pre-heat temperatures for a siemens V94. 3A gas turbine burner [C]// ASME Turbo Expo 2006: Power for Land ,Sea ,and Air ,Barcelona Spain 2006.
- [14] GiovanniCerri , Leila Chennaoui , Ambra Giovannelli , et al. Expander models for a generic 300 MW F class gas turbine for IGCC [C]// ASME Turbo Expo 2014: Turbine Technical Conference and Exposition , Düsseldorf , Germany 2014.
- [15] A. X. Sengisen ,A. V. Giauque ,G. S. Staffelbach. Large eddy simulation of piloting effects on turbulent swirling flames [J]. Proceedings of the Combustion Institute 2007 31: 1729 - 1736.
- [16] 刘富强 张栋芳 准耀欣,等. 某重型燃气轮机环形燃烧室的 数值模拟[J]. 燃气轮机技术 2011 24(1):20-25. LIU Fu-qiang ZHANG Dong-fang ,CUI Yao-xin ,et al. Numerical simulation of combustion glow in the heavy gas turbine annular combustor[J]. Gas Turbine Technology 2011 24(1):20-25.
- [17] G. Bulat ,W. P. Jones ,A. J. Marquis. NO and CO formation in an industrial gas-turbine combustion chamber using LES with the eulerian sub-grid PDF method [J]. Combustion and Flame ,2014 , 161:1804 – 1825.
- [18] 普 勇 张 健 周力行. 一次风旋流数对燃烧室内湍流燃烧
 与 NO_x 生成的影响 [J]. 工程热物理学报,2005,26:265
 268.

PU Yong ZHANG Jian ZHOU Li-xing. Effects of swirl number of the primary air on the turbulent combustion and nox formation in a swirl combustor [J]. Journal of Chinese Engineering Thermophysics 2005 26: 265 – 268.

[19] 张文普,丰镇平.燃气轮机环形燃烧室内燃烧流动的数值模 拟[J].动力工程学报 2004 24(1):37-40.

ZHANG Wen-pu , FENG Zhen-ping. Numerical simulation of three-dimensional combustion flow in a gas turbine annular combustor [J]. Journal of Chinese Society of Power Engineering , 2004 24(1):37 - 40.

[20] 赵晓燕 李祥晟 丰镇平. 燃气轮机低热值合成气燃烧室内三 维湍流流动的数值模拟研究 [J]. 动力工程学报,2009,29 (4):330-334.

ZHAO Xiao-yan ,LI Xiang-sheng ,FENG Zhen-ping. Numerical simulation research on three dimensional turbulence flow in a gas turbine combustor burning low heat value syngas [J]. Journal of Chinese Society of Power Engineering 2009 29(4): 330 – 334.

(陈 滨 编辑)

through Semicircular Microchannel [刊 ,汉]SUN Bin ,CHEN Chen ,YANG Di (Northeast Dianli University ,Jilin ,China ,Post Code: 132000) //Journal of Engineering for Thermal Energy & Power.. -2016 31(6). -27~34

In order to study the heat transfer and flow characteristics of fluid flowing through the semi-circular microchannel, the convective heat transfer characteristics of deionized water ,Cu-water nanofluids and Al- water nanofluids were studied experimentally in the progress of thermal subsidence in 21 semicircular parallel microchannels with 612µm equivalent diameter. Microchannel heat transfer coefficient of thermal subsidence and pressure drop were measured and calculated. The fact that semicircular microchannel heat exchanger also has good heat transfer performance compared to the conventional shape of rectangular cross-section was confirmed by the results. Moreover ,compared to deionized water ,adding Al and Cu nanoparticles increases the pressure drop. Nanofluids effects in the process of thermal subsidence in microchannels deteriorate due to the accumulation of nanoparticles ,precipitate ,and the viscosity and other reasons when the concentration of nanofluids is 0.5%. Based on the experimental data the correlations of laminar convective heat transfer and drag coefficient of low concentration of nanofluids in semicircular microchannel were formulated. The results are of great significance for the integrated chip cooling system design. **Key words**: nanofluids ,microchannel heat transfer coefficient ,resistance characteristics

入口压力对某环形燃烧室内燃烧及 NO_x 生成的影响 = Impact of Inlet Pressure on Combustion and NOx Formation in an Annular Combustion Chamber [刊,汉] FU Zhong-guang ,SHI Li ,LIU Bing-han ,SHEN Yazhou (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment (North China Electric Power University) ,Ministry of Education ,Changping District ,Beijing ,China ,Post Code: 102206) //Journal of Engineering for Thermal Energy & Power. - 2016 ,31(6). - 35~41

The impact of combustor inlet pressure on combustion and thermal NO_x formation characteristic in an annular combustion chamber was simulated numerically by commercial CFD code Fluent. The predicted results show that the increase of inlet pressure increases the density of gas flow and thus decreases the velocity of gas flow and magnitude of back flow regions which reduce flame temperature and high temperature zone near those regions. The mole concentration of oxygen atom increases with inlet pressure which accelerates the generation of thermal NO_x in premixed flame. The region of the highest thermal NO_x formation rate is near the boss of the combustion chamber. Fall of flame temperature in those regions reduces the growth rate of thermal NO_x formation to some extent. The formation rate of thermal NO_x near the crust are relatively higher than that of hub side under different inlet pressures. **Key words**: gas turbine annular combustion chamber inlet pressure back flow region

可控涡结构的三维湍流燃烧特性的数值分析 = Numerical Simulation of Turbulent Combustion Characteristics in the Vortex Controlled Diffuser [刊 汉]ZENG Zhuo-xiong, GUO Shuai-shuai (College of Power and Me-