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o k- 1
. Tab. 1 Approximate and ultimate analysis of coal
1% 0w e 1%
’ ¢, H, O, N, S, /(Mikg M, A, V, C,

L1 45.5 3.18 10.7 0.58 0.53 17.66  24.74 14.77 24.21 36.28
a N
olap) + V- (apr) =m (1
_ . e (R5 -R7) .
e ) i (R2) ( R3.R4)

m/s;, m — kg/( *m’es) .

1.1.2 Coal—achar + bvolatile + ash ( R1)
i( ap;) L (ap;;) a4V Char +0.50,—CO ( R2)
at Char + H,0—CO +H, ( R3)

+tapg + Kl v, —w, [ +mo (2) Char + C0,—2CO ( R4)

;— N: K— : p— CO +0.50,—CO, ( R5)
N H, +0.50,—H,0 ( R6)
CH, +20,—CO, +2H,0 ( R7)
1.1.3
10
%( apH) + V- (apvH) = V- (A VI) + ro = (Y, + Yk)C,,. (4)

h1 T, - Tg | +mH (3) ka(b) = Aa( b) exp( - Ea( b) /( RTS) ) (5)
“H— kJ/kg; x— A,=0.2 us ' A, =13 ps™' E, =104 600 J/

W/(mek); h— W/(m?ek); kmol E, =167 400 J/kmol Y, =0.3 ¥, =1.0 T.—

mH — .

"o,

kJ/(m’es) . '

r, = 0.554exp( - 10 824/T ) C,, (06)

1.2 2.

. CaCo '
( 4 3) r — klprea(‘l ( 7)

H,.HCN.CH,.H,0.NO.NH,.CO.CO,.0, N,. U 4 hyp Esp o

: pream_ HZ O COZ Pa;
ppr{)(l_ H2 CO Pa’ kl \kZ
ky— 2 o

R5.R6 R7

(8) ~ (10) .
re = 1.0 x 10'5exp(w)cmc‘(§j (8)

1 o ¢
2
Tab. 2 Gasification kinetic constants for char
H,0 CO,
kywyo/s ™' MPa™! ky o /s T MPa ! ks uyo /s Ey coy /s MPa™! ky o, /s T MPa ™! ks cop /s
526 2.81x107° 8.1x107° 4.53 x10* 3.28x10°° 1.84x10°°
E/J*kmol ~! 95 100 -135 100 -218 500 160 100 -158 500 -157 600
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ro = 5.159 x lolsexp(ﬂ) T-Lschzscoz NO, o
T, NH, HCN
(9) o
13
r, = 3.552 x 10]4exp(ﬂ) T Cey,, Co, )
T, 1.3.2 SNCR
(10) Nguyen Brouwer 7
1.3 NO, SNCR r
L3 NO, r o= kC,C,T" k
Ae—E/(RT) M s
NOx ° 4 o
3

Tab. 3 Oxidation reaction equation and rate of nitrogen compounds

HCN +0.50,—CNO + H kCo, Cyex k=2.14 x10%exp( —10 000/7)
CNO +0.50,—NO + CO kCo, Cyen (ki /(ky +k,Cyo) ky /ky =1.02 x 10 exp( —25 460/T)
CNO +NO—N, 0 + CO kCo, Cuen(ky Cno 7Ky +k, Cyo) ky =2.93 x 10" exp( —22 709/T)

4 SNCR

Tab. 4 Chemical kinetic parameters in the SNCR process

A/m3eg 1ok b b E/J*( kmol) !
NH; + NO—N, + H,0 + H 2.13 x10 5.30 2.43 x 108
NH; +0,—NO +H,0 +H 8.83 x 103 7.65 5.86 x 108
HNCO + M—H + NCO + M 1.39 x10" 0.85 3.45 x 108
NCO + NO—N,0 +CO 2.26 x 10" 0 -2.6x10’
NCO + OH— NO +CO +H 3.68 x10° 0 0
N,0+0H— N, +0, +H 8.6 x10* 0 8.37 x 107
N,O0+M—N, +0+M 8.5 %107 0 3.39 x 10°
47 o
25
75 t/h [ SO
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B
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Fig. 1 Structure diagram of the CFBB
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This study investigated the effect of the corrosive SO, in gas flue on erosion wear of 20 carbon steel which is widely
used in rear heat recovery surfaces in coalfired boilers. The hot-state experimental study of fly-ash erosion of 20
carbon steel was carried out in the atmosphere containing corrosive gas SO, at a temperature range of 250 °C ~
450 °C. The results show the relative erosion wear of 20 carbon steel in the atmosphere containing corrosive gas SO,
is more serious than in the compressed air flow atmosphere as a result of the interrelation between wear and corro—
sion. The influence is more significant at the low-temperature section than at the high-temperature section in the
tested temperature range. The hot-state erosion characteristic of 20 carbon steel is no change; the erosion rate in—
creases first and decreases afterwards as the temperature goes up but the critical temperature is higher up to

375 °C. Key words: power station boiler fly-ash erosion 20 carbon steel corrosive wear SO,

= Energy Consumption Analysis of Thermal Power
Plant Using Low Vacuum Heating based on the Second Law of Thermodynamics GAO Xin-yong
SUN Shi-en HE Xiao-hong ZHENG Li§un ( Huadian Electric Power Research Institute Hangzhou Zhejiang Chi-
na Post Code: 310029) //Journal of Engineering for Thermal Energy & Power.. —2016 31(6) . —59 ~65

Based on the thermodynamics law and “unit consumption analysis” theory the energy Consumption analysis method
of thermal power plant using low vacuum heating is deduced. Using the method the energy consumption ofa power
plant is evaluated. The results show that the total energy consumption of thermal power plant could be ranked from
good to bad as pure condensing condition extraction steam heating condition and extraction steam and low vacuum
heating condition. The values of exergy efficiency and additional unit consumption could be ranked from good to bad
as low vacuum heating subsystem extraction steam heating subsystem and electricity production subsystem. When
thermal power plant uses low vacuum heating back pressure and terminal temperature difference of condenser have
optimum values. In the power plant example back pressure reaches the optimum when exhaust steam temperature is
65 °C and the optimum valve of terminal temperature difference is 3 “C. When power plant uses low vacuum to re—
place extraction steam heating the mount of exiraction steam has an optimum value which is 283.96 t/h in the
power plant example. So Using exiraction steam heating and low vacuum heating to reform power plant is very nec—
essary under the premise that the power plant has heat users. Key words: thermodynamics law unit consumption a—

nalysis cascade utilization of thermal energy exergy efficiency low vacuum heating

SNCR = Effects of the Flow and the Combustion Characteristics
of Circulating Fluidized Bed on SNCR Denitrification WANG Wei JIN Bao-sheng WANG Xiao-jia
ZHANG Yong ( Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education School of Ener—

gy and Environment ( Southeast University) Nanjing Jiangsu China Post Code: 210096) //Journal of Engineering
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for Thermal Energy & Power.. —2016 31(6) . —-66 ~73

Toinvestigate the effect of NO, inhomogeneity caused by flow and combustion in the circulating fluidized bed on
SNCR denitration efficiency this article establishes a mathematical model of dense gas-solid flow coupled with
chemical reaction to comprehensively simulate the gas-solid flow combustion reaction NO, formation and denitra—
tion reaction process in the CFB boiler aiming at the processes of furnace combustion ammonia spraying and SNCR
denitration reaction. And it focuses on the influence of different ammonia injections on the denitration efficiency and
the rate of ammonia escape with the non-uniform entrance. Results show that the NO, flux distributes inhomoge—
neously at outlet of horizontal flue after combustion. The denitration efficiency can be significantly increased by
changing the structure and operation parameters of ammonia injection points. The efficiency reaches above 68%
when using the first column to vertically spray ammonia and the mole ratio of NH,/NO, is 1.2. Key words: circu—

lating fluidized bed cyclone separator selective non-catalytic reduction denitration numerical simulation

= Optimization Strategies for the Operation of CCHP System
in Distributed Energy Station QIAN Hong YANG Ming CHEN Dan CUI Cheng—gang ( Shanghai Univer—
sity of Electric Power Shanghai China Post Code: 200090) //Journal of Engineering for Thermal Energy & Pow—
er.. —2016 31(6). =74 ~79

The optimal operation strategy for CCHP system in distributed energy station is the key to guarantee its excellent op—
erating. Based on a CCHP system combined with energy storage system this paper established a model targeting the
optimal operation strategy for overall output in a scheduling cycle. Improved genetic algorithms were utilized to
solve the model for the best operation strategy so that energy station is operated at optimum efficiencies under differ—
ent load conditions. Key words: CCHP load demand at every time interval Energy Storage unit operation mode

optimal operation strategy

= Application of Seeker Optimization Algorithm in the
Main Steam Pressure Control System for Boiler CHENG Jiatang AI Li XIONG Yan ( The Engineering
College of Honghe University Mengzi Yunnan China Post Code: 661199) //Journal of Engineering for Thermal
Energy & Power.. —2016 31(6) . —80 ~84

Themain stream pressure is an important parameter reflecting the state of boiler operation. For the main stream pres—
sure control system a method for optimizing the parameters of PID controller based on seeker optimization algorithm
( SOA) was proposed. In this algorithm the time integral of absolute error performance index is taken as the fitness

function and then a set of optimized parameters is obtained. Simulation results show that SOA has better searching



