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for Thermal Energy & Power.. —2016 31(6) . —-66 ~73

Toinvestigate the effect of NO, inhomogeneity caused by flow and combustion in the circulating fluidized bed on
SNCR denitration efficiency this article establishes a mathematical model of dense gas-solid flow coupled with
chemical reaction to comprehensively simulate the gas-solid flow combustion reaction NO, formation and denitra—
tion reaction process in the CFB boiler aiming at the processes of furnace combustion ammonia spraying and SNCR
denitration reaction. And it focuses on the influence of different ammonia injections on the denitration efficiency and
the rate of ammonia escape with the non-uniform entrance. Results show that the NO, flux distributes inhomoge—
neously at outlet of horizontal flue after combustion. The denitration efficiency can be significantly increased by
changing the structure and operation parameters of ammonia injection points. The efficiency reaches above 68%
when using the first column to vertically spray ammonia and the mole ratio of NH,/NO, is 1.2. Key words: circu—

lating fluidized bed cyclone separator selective non-catalytic reduction denitration numerical simulation

= Optimization Strategies for the Operation of CCHP System
in Distributed Energy Station QIAN Hong YANG Ming CHEN Dan CUI Cheng—gang ( Shanghai Univer—
sity of Electric Power Shanghai China Post Code: 200090) //Journal of Engineering for Thermal Energy & Pow—
er.. —2016 31(6). =74 ~79

The optimal operation strategy for CCHP system in distributed energy station is the key to guarantee its excellent op—
erating. Based on a CCHP system combined with energy storage system this paper established a model targeting the
optimal operation strategy for overall output in a scheduling cycle. Improved genetic algorithms were utilized to
solve the model for the best operation strategy so that energy station is operated at optimum efficiencies under differ—
ent load conditions. Key words: CCHP load demand at every time interval Energy Storage unit operation mode

optimal operation strategy

= Application of Seeker Optimization Algorithm in the
Main Steam Pressure Control System for Boiler CHENG Jiatang AI Li XIONG Yan ( The Engineering
College of Honghe University Mengzi Yunnan China Post Code: 661199) //Journal of Engineering for Thermal
Energy & Power.. —2016 31(6) . —80 ~84

Themain stream pressure is an important parameter reflecting the state of boiler operation. For the main stream pres—
sure control system a method for optimizing the parameters of PID controller based on seeker optimization algorithm
( SOA) was proposed. In this algorithm the time integral of absolute error performance index is taken as the fitness

function and then a set of optimized parameters is obtained. Simulation results show that SOA has better searching
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capability and optimization efficiency compared to particle swarm optimization and genetic algorithms and can im—
prove the dynamic performance of main stream pressure control system. Key words: boiler main stream pressure

seeker optimization algorithm ( SOA) PID parameter optimization

= Influence of Rotational Speed on Thermal Performance
of Tri-sector Rotary Air Preheaters Based on Finite Difference Method CHEN Xun DUAN Xue-
nong YANG Yi WANG Dun-dun ( State Grid Hunan Electric Power Corporation Research Institute Changsha Hu-—
nan China Post Code: 410007) //Journal of Engineering for Thermal Energy & Power.. —2016 31(6) . -85 ~91

Based on finite difference method the tri-sector rotary regenerative air-preheater was spread along the rotor’ s circu—
lar side and mesh between the matrix elements and the fluids was generated. Then the matrix and fluid temperature
fields were obtained according to the energy balance equation and using an improved Gauss-Sidel arithmetic. For a
600MW unit tri-sector rotary regenerative air-preheater a detailed analysis was carried out for the temperature field
distributions of the fluid and metal and ammonium bisulfate ( ABS) deposition area with different the rotational
speeds. The results showed that 1) The nonlinear characteristics of matrix temperature distribution along with the
rotation angle increases while the rotational speed decreases which can be described by the unsteady heat transfer
correction factor IT and for each sector the value of factor IT is different. 2) There exist relatively stable balance
positions during both heating and cooling periods which are the intersection points of matrix temperature profile
curves with different rotational speeds. 3) The effect on average outlet temperatures of primary and secondary air
channels from rotor rotational speed depends on the rotor rotation direction and the sector angle division. Key
words: tri-sector rotary air preheater rotational speed thermal performance finite difference method ammonium bi—

sulfate unsteady heat transfer

= The Pressure Pulsation of Mixed-flow Reactor Coolant Pump
LI Jing-yue LAI Xi-de ZHANG Xiang LUO Li ( School of Energy and Power Engineering Xihua University
Chengdu Sichuan China Post Code: 610039) //Journal of Engineering for Thermal Energy & Power. . —2016
31(6). =92 ~97

The reactor coolant pump is one ofthe main equipments and pressure boundaries of the reactor coolant system and
the requirements of safety and reliability are extremely high. And the complex pressure pulsation can lead to fatigue
damage of flow channel. In order to improve the safety and reliability of reactor coolant pump the CFD method was
employed to simulate numerically the transient flow field. The impeller and diffuser were taken into account and the
characteristics of pressure pulsation in time were analyzed. The frequency domain characteristics of pressure fluctu—

ation were obtained by using the method of FFT. The results show that pressure fluctuation at the design working



