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Established was a mathematical model for direct contact type steam generators simulated and analyzed was the in—
fluence of such independent variables of a direct contact type steam generator as the initial heat exchange tempera—
ture difference and the working medium flow rate and heat conduction oil flow rate on the main performance of a
steam generator such as its volumetric heat exchange coefficient total heat exchange volume working medium
steam production capacity and the temperature of the working medium at the outlet and at the same time verified was
the mathematical model thus established through employing the test means. It has been found that the values ob—
tained from the theoretical curves of the performance of the steam generator has a relatively good agreement with the
test values and a complicated non-inear function relationship does exist between various independent variables and
the heat exchange performance. In order to obtain the optimum heat exchange performance it is necessary to per—
form a parallel optimization of the heat exchange system. Key words: direct contact type steam generator mathe—

matical model volumetric heat exchange coefficient gas content

C = Numerical Simulation of a C-shaped Tube Heat Exchanger
in a Passive Residual Heat Removal System LIU Ai-qiong ZHANG Xiao-ying( College of Sino¥rance
Nuclear Engineering and Technology ~Zhongshan University Zhuhai China Post Code: 519082) LI Zhi-wei
( College of Electric Power South China University of Science and Technology Guangzhou China Post Code:
510640) //Journal of Engineering for Thermal Energy & Power. —2016 31(7). -22~29

To guarantee the effective heat conduction of residual heat from a passive residual heat removal system under the ac—
cidental operating conditions studied were the heat exchange characteristics of the main equipment item i.e. the
PRHR heat exchanger and established was a model for analyzing the inner and outer coupled heat transfer of C—
shaped tube heat exchangers in a passive waste heat discharging system. In this connection a one-dimensional
homogeneous phase flow model was employed to calculate the condensation heat exchange inside the tubes and the
CFD program was used to analyze the natural convection in the space of a water pool. In addition the influence of
the mass flow rate at the inlet gas content of the fluid at the inlet the inclination angle of the tubes and the tem—
perature inside the water box on the heat exchange performance of the C—shaped tube heat exchanger was also stud—
ied. It has been found that a saturated two—phase flow always exists inside the tubes in the inclined section at the
inlet of the C-type tube heat exchanger the temperature of the fluid inside the tubes in the vertical section and the
inclined section at the outlet will gradually decline the pressure inside the tubes enthalpy value of the fluid and

the heat exchange coefficient will drop step by step along the tube length direction the parameters of the fluid in
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the tubes will tend to be stable after a condensation for about 70 seconds the temperature on the tube walls will
quickly drop in the inclined section at the inlet and tend to be slow and smooth in the vertical section and the sec—
tion at the outlet. Furthermore to increase the mass flow rate and the gas content of the fluid at the inlet the tem—
perature and enthalpy of the fluid as well as the heat exchange coefficients inside and outside the tubes will increase
and the influence of both mass flow rate and gas content will gradually decrease. If the inclination angle of the tubes
increases by 20 degrees the temperature of the fluid inside the inclined tube section at the outlet will become lower
by about 3 °C. When the temperature inside the water box increases by 10 °C  the bubble formation and separation
speed will increase the heat exchange inside the water box will enhance the temperature rise on the outer wall of
the tubes in the inclined section at the inlet will increase by around 2 C and the temperature on the outer wall of
the tubes in the inclined section at the outlet will heighten by about 0.2 °C. The simulation results obtained by u-
sing the software CFD indicate that the most majority of the bubbles in the water box gather on the top of the C—
shaped tubes and flow upwards gradually leading to a movement of the hot fluid upwards and the cold fluid down—
wards thus forming a natural circulation. Key words: C-shaped tube heat exchanger coupling heat transfer con—

densation heat transfer natural convection
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In order to lessen the high back pressure problems arisen from a relatively high condensation temperature proposed
was an ORC power generation system. For a geothermal heat source at a temperature of 373 K the influence of the
jet ejector on the performance of the system was analyzed under various working media at different condensation
temperatures and a comparison was made under the following two operating conditions one having a flow division
and another having not. It has been found that the use of a jet ejector device can enhance the performance of the
system and an optimum boosting pressure ratio a does exist to make it be the best among them an ORC-based flow
division jet ejector system >an ORCet ejector system >an ORC cycle system. If R245fa serves as the working me—
dium and when Tc =298 K the flow division jet ejector system will have a higher exergy efficiency than the jet e-
jector ORC system and the ORC cycle system by 1. 89 % and 6.43% respectively. The higher the critical tempera—
ture of the working medium the better in enhancing the performance of the system using the jet ejector device. The
flow division can lessen the influence of the working medium on the jet ejector device thus making the law gover—
ning the system efficiency when various media is used closer to that of the ORC cycle system: R236fa > R114 >
R245fa > R152a. When the condensation temperature of the systems is comparatively high the use of a jet ejector
device has an important significance. Key words: jet ejector condensation temperature optimum boosting pressure

ratio critical temperature system performance



