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Tab. 1 Table of the comparison of the target value of ultra low emissions and the original design

index with the emissions standard for important areas

18% 23.4 mg/Nm’® <30 mg/Nm® <20 mg/Nm® <5 mg/Nm?
0.8% S0, 1 745 mg/Nm? <108 mg/Nm® <50 mg/Nm® <35 mg/Nm®
SCR NO,, 300 mg/Nm’ <70 mg/Nm® <100 mg/Nm® <50 mg/Nm®
0.2 ngl/g 25 pg/Nm® — <30 pg/Nm® <5 pg/Nm®
2.2 \ ’
N 2 80% ~ 120%
~ S 6-7 o
2(a) . 2(b) Hg
o 2 1-~7 o
XC -30B
(0.5 ~100 000 ng) RA -915M
(0.01 ~2 000 ug/L) . XC-30B
()
2 o 7
. SCR ESP
300 ml/min . ESP
500 ml/min o
(
Y EPA Method 30B)
§
Y GB/T 16157 - 1996) *~* ;
3 N N 2
Fig. 2 Schematic diagram of the locations of

the test and measuring points
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2
Tab.2 Mercury contents of the samples at various measuring points
6-7 FGD  Hg"
7 1 000 MW 13.5 11.39 84.4% 2.89 8.2 0.1 0.2
7 1 000 MW 45.9 37.79 82.3% 6.29 30.2 1.2 0.1
8 1 000 MW 11 11.1 100.9% 1.5 9.2 0.3 0.1
8 1 000 MW 10.3 9.89 96% 0.59 8.4 0.7 0.2
8 500 MW 8.8 8 90.9% 0.4 7.4 0.1 0.1
2.3 ) 6% o 8
500 MW 1 000 MW
Y, =(C, -C,) /C, (1) . 3~ 5 WFGD
LY, — % ; C,—SCR pe/ Hg" Hg" Hg’" 0.58.0.57
Nm’; C,—WFGD pg/Nm®, 0.02 pg/Nm’ 1. 17 pg/Nm’
; 88.4% 0.06.0.06 0.03 pg/
Y,=C,/C, (2) Nm’ 0.12 pg/Nm’ 97. 7%
Y, — % ; Cy— 1 C— 9.3%
ug/Nm’ . 500 MW 0.024.0. 21
0.03 wg/Nm’ 0.48 pg/Nm’
96% 7.7%
8
1 000 MW
500 MW . SCR
SCR Hg'"
Hg** 67.5% 153% . 7
o 7
SCR Hg* 8.2%
163% Hg** 154. 8%
3 18.55% He'* .
Fig. 3 Diagram of a mercury sampling system
3 8 (ng/Nm’)

Tab. 3 Mercury concentration in the flue gas

duct in the tail portion of No. 8 unit in a power plant

3 before the reconstruction( wg/Nm®)
31 SCR SCR ESP ESP WFGD
‘ ) ( 2) Hg" 5.03 4.78 5.06 0.40 0.58
Hg’ 2.81 1.06 0.60 0.10 0.57
3 Hg?* 2.22 3.72 4.46 0.29 0.02
( 0 C. 10. 06 9.56 9.58 0.79 1.17

760 mmHg) ( DCS
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(ng/Nm’) 7
Tab4 Mercury concentration in the flue gas ESP . .
duct in the tail portion of No. 8 unit in a power plant 4(a) . 4(b)
after the reconstruction( pg/Nm®) 0.1% ;
SCR SCR WFGD ESP 42.99,
Hg" 2.68 2.68 0.06 72.7% SCR HgO Hg2+
Hg’ 2.02 1.01 0.03 Hg2+
Hg?* 0.66 1.67 0.03
5.36 5.36 0.12
18% 4.2% Hg**
5 500 MW 8 He?*
(pg/Nm') , &
Tab.5 Mercury concentration in the flue gas duct Hg 76.6%;
in the tail portion of No. 8 unit in a power plant at a Hgo 39. 1%
load of 500 MW after the reconstruction( pug/Nm*) 22.6% HgO ng
SCR SCR ESP ESP WFGD
Hg" 6.15 5.22 5.83 3.07 0.24 He’ Hg™
Hg" 4.42 0.69 0.87 0.38 0.21
Hg?* 1.73 4.53 4.96 2.69 0.03
12.3 10.44 11. 66 6.14 0.48
7
(ng/Nm’)
Tab. 6 Mercury concentration in the flue gas duct
in the tail portion of No.7 unit in a power plant
before the reconstruction( pg/Nm®)
SCR SCR ESP ESP WFGD
Hg" 5.16 4.56 4.28 2.38 1.43
Hg’ 2.37 1.53 1.41 0.92 1.28
Hg?* 2.79 3.02 2.87 1.45 0.15
10.32 9.11 8.56 4.75 2.86
7 7
(ng/Nm’)
Tab.7 Mercury concentration in the flue gas duct
in the tail portion of No.7 unit in a power plant
after the reconstruction( pg/Nm®) 4 T
SCR SCR WECD Fig. 4 Mercury emissions in the emission products
He' 13.96 1549 9% from unit No. 7 before and after the reconstruction
Hg’ 9.41 3.55 1.89
Hg?* 4.54 11.95 0.10 1 000 MW 500 MW
27.91 30.99 3.98 8 ESP N
o 5(a) . 5(b). 5
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(c) 0.1%
; ESP
81.1% 89.9%
10.8% 500 MW 86.6%
6.8% 500 MW 1 000
MW
8 Hg’ Hg’"
7.3% 9.6% 31.5%
Hg'* ;
Hg’ 11.5%
2.5% 78.3% 500 MW
8.7% 24.3%
3.3
( SCR.
ESP  WFGD ) 29,
3.3.1 SCR
SCR s
SCR V,0, TiO,
(  HCL.HF ).
’ . SCR
Hg’ Hg*
o708 SCR  Hg’
4
o 8. 9 Hg
9.2% 13.3% SCR  Hg’
4%  32% 8 500 MW Hg
SCR  Hg’ 7. 7%
25% SCR  Hg’
Hg o
8 8
Tab. 8 Influence of the flue gas purification
facility in unit No. 8
(500 MW)
Hg 1% 88.4 97.6 96. 1
SCR  Hg° 1% 34 38 59

5 8
Fig. 5 Distribution of mercury in the emission

products from No. 8 unit

9 7
Tab. 9 Influence of the flue gas purification

facility in unit No.7

Hg 1% 85.7

SCR  Hg’ 1% 12 44

( ESP)
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ng * 1 WANG Yunjun. Comparison of mercury removal performance of bag

. WFGD  Hg**
80% ~95% WFGD

Hg’ "
Hg’" 10% ~90%
-, WFGD Hg’
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Hg’ WFGD
P 3~ 5 8 WFGD
Hg™* 99% Hg'* 95.5%
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pump having a large flow rate 1. 4(Q, the magnitude of the returning flow vortexes at the inlet was 0.45. It has
been found that with an increase of the flow rate the magnitude of the returning flow vortexes will decrease and the
image and numerical values can show the structure and magnitude of the vortexes in a comprehensive way. The in-
fluence of the returning flow vortexes on the pressure and speed on the inducer wheel was also simulated and ana—
lyzed. Due to the hydraulic losses arisen from the returning flow vortexes the pressure at the leading edge of the in—
let of the inducer wheel went down and a small part of the low pressure zone emerged at the leading edge of the inlet
of the inducer wheel thus enhancing the possibility of cavitation on the inducer wheel. On the basis of an analysis
of the unfavorable flow at the inlet of a high speed pump the foregoing can offer theoretical reference for design and
optimization of high speed centrifugal pumps. Key words: high speed centrifugal pump returning flow vortex in-

ducer wheel numerical simulation

= Influence of the Ultra Low Emission Modification of a Coal-fired
Unit on the Mercury Emissions HUA Xiao-yu( Zhejiang Zheneng Technology Research Institute Co.
Ltd. Hangzhou China Post Code: 310052) ZHANG Liangi( Zhejiang Zheneng Lanxi Power Generation Co.
Lid. Jinhua China Post Code: 321100) SONG Yu-cai LU Hong-bing( Zhejiang Zheneng Fuxing Fuel Co. Lid.
Hangzhou China Post Code: 310005) //Journal of Engineering for Thermal Energy & Power. -2016 31(7).
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It is fully understood that the law governing the distribution and morphology of mercury in the ultra low emission
technology is critical for studying the mercury control problem when the new ultra low emission technology is applied
in coalired power plants. In order to study the mercury emissions given in the ultra low emission tasks the stand—
ard Ontario method was employed to measure and test the mercury emissions before and after the flue gas ulira low
emission reconstruction was carried out in two coal-fired units in a power plant in Zhejiang province with its empha-
ses being given to analyzing the cooperative mercury removal action of the pollution control equipment items after
the ultra low emission reconstruction had been made. It has been found that the total mercury removal rate obtains
a remarkable improvement which mainly changes the distribution of mercury morphology in flue gases and increa—
ses the Hg”* proportion. The selective catalytic reduction will influence the distribution of mercury morphology

however will not change the total mercury content. The electrostatic precipitators can lower the mercury concentra—
tion by a great margin. The wet-method flue gas desulfurization can achieve a relatively good result in removing the
mercury oxide in the gas phase but have no removal effect on the Hg’. It can be seen from the measuring and tes—
ting results that the total mercury removal efficiency of the two units has averagely enhanced by 13.9% and the
Hg’* proportion by 153.9% therefore verifying that the use of pollution control equipment items ( dust removal
devices denitrification devices and desulfurization devices) to cooperatively remove the mercury after an ultra low
emission reconstruction is regarded as an comparatively economic and effective measure. Key words: coalired u—

nit ultra low emission mercury emissions



