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5 a=5°
Fig.5 Chart showing the airfoil flow field and pressure distribution at various widths of the clearance

between the wing and flap when the attack angle equals to 5 degrees

6 a=10°
Fig. 6 Chart showing the airfoil flow field and pressure distribution at various widths of the clearance

between the wing and flap when the attack angle equals to 10 degees
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Fig.7 Chart showing the airfoil flow field and pressure distribution at various widths of the clearance

between the wing and flap when the attack angle equals to 15 degees
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= Influence of the Flap Slot Width on the Hydrodynamic Characteristics of
an Airfoil LI Rundie LI Chun LI Qian—gian YE Zhou ( College of Energy Source and Power Engineer—
ing Shanghai University of Science and Technology Shanghai China Post Code: 200093) LI Chun YE Zhou
( Shanghai City Key Laboratory on Multi-phase Flow and Heat Transfer in Power Engineering Shanghai China
Post Code: 200093) //Journal of Engineering for Thermal Energy & Power. -2016 31(7). -117 ~122

In the light of the problem of the stall of an airfoil the CFD numerical simulation method was employed. With the
airfoil NACAOO18 serving as the reference airfoil the influence of the flap slot width on the distribution of the pres—
sure and flow field contours was analyzed. The calculation results show that when the airfoil has a small attack an—
gle the flap slot width exerts a relatively small influence on the suction side of the airfoil while exercise a relatively
big influence on the high pressure zone in the pressure side of the airfoil. When airfoil has a big attack angle the
presence of the flap slot will change the configuration of the flow field formed by the airfoil thus reducing the num—
ber of vortexes evolved in the wake and narrowing the range of the vortexes. At a large attack angle the flap slot
will exert a relatively big influence on the range of the high pressure zone on the pressure surface and the low pres—
sure zone on the suction surface. It has been known by comparing the influence of the three kinds of flap slot width
on the pressure and streamline contours of the airfoil that when the flap slot width w =0.1% ¢ the hydrodynamic

performance of the airfoil will be optimal. Key words: airfoil flap flap slot width hydrodynamic characteristics

Spar = Analysis on the Dynamical Response of the Structure of the
Spar Platform for Floating Wind Turbines YE Zhou WU Zhong-wang ZHAN Pei LI Chun ( College
of Energy and Power Engineering University of Shanghai for Science and Technology Shanghai China Post
Code: 200093) YE Zhou LI Chun ( Shanghai City Key Laboratory on Multiphase Flow and Heat Transfer in
Power Engineering Shanghai China Post Code: 200093) //Journal of Engineering for Thermal Energy & Power.
-2016 31(7). -123~129

By using the finite element method based on Von-Mises failure theory with the damping and inertial load of the
structure of the platform being taken into consideration the Ansys finite element software and the open source pro—
gram software FAST were used respectively to study the dynamic response and structural stress of the platform. It
has been found that a helical side plate has no conspicuous influence on the self-vibration frequency of the spar
platform and the additionally installed helical side plate can effectively decrease the movement response along the
vertical and horizontal vibration direction however achieve no obvious improvement in the horizontal vibration di-—
rection. The helical side plate will block the ocean current and increase the flow resistance. In addition the struc—
tural stress of the platform will somewhat increase and the maximum shear stress will be approximately half of the
maximum equivalent shear stress which is critical for securing the safe and stable operation of the platform howev—
er the structure of the platform is still safe. Key words: floating wind turbine Spar platform structural optimiza—

tion strength dynamic response



