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coefficient will increase by 19% to 48% . In addition the comprehensive performance of the dual helical structure
will be obviously superior to that of the single helical structure and the comprehensive performance of the dual heli—
cal structure will attain its optimum when Re =2 000. It can be known from the field synergy principles that the in—
tense disturbance to the fluid caused by the dual helical fin structure will force the synergy degree of the speed vec—
tor and the temperature gradient vector of the fluid to become better. The comprehensive comparison results show
that the dual helically finned heat pipe is more instrumental to enhancing the heat exchange. Key words: dual heli—

cal fin heat pipe numerical simulation field synergy principle

Co, = Numerical Study of the Falling Film Absorption of Carbon Diox—
ide by Monoethanolamine Solution /ZHAO Lindin DING Yu-dong ZHU Xun LIAO Qiang ( Education
Ministry Key Laboratory on Low—grade Energy Source Utilization Technologies and Systems Chongqing University
Chongqging China Post Code: 400030) //Journal of Engineering for Thermal Energy & Power. — 2016 31(9).
-27~32

In the light of the heat and mass transfer problems in the process of the MEA ( monoethanolamine) solution to ab—
sorb the carbon dioxide in falling films a two-dimensional mathematical model for the MEA solution at various con—
centrations absorbing carbon dioxide in falling films was established and the distribution of both temperature and
concentration field inside the liquid films as well as the law governing changes of the heat flux mass flux and carbon
dioxide absorption rate inside the liquid films along the liquid film falling direction were obtained. It has been found
that the temperature at the inlet on the boundary surface rapidly increases and then assumes a decline as per an ex—
ponential regularity. The heat flux mass flux and carbon dioxide absorption rate along the liquid film falling direc—
tion at the inlet drops sharply like a straight line and afterwards changes by a small margin indicating that the ab-
sorption action mainly happens at places closing to the inlet section. At the middle location of the liquid film the
variation tendency of the heat and mass flux differs greatly around the inlet section which is possibly caused by a
part of the reactionreleased heat quantity absorbed by the liquid. Key words: monoethanolamine solution falling

film absorption two-dimensional numerical simulation heat flux mass flux

= Numerical Simulation of the Saturated
Flow Boiling Heat Exchange Characteristics of a Surfactant Water Solution in a Microchannel /
WANG Ying-hui WANG Ru ( College of Energy Source and Power Engineering Jiangsu University Zhenjiang Chi-
na Post Code: 212013) GUI Ke-ting SHI Ming-heng ( College of Energy Source and Environment Southeast Uni—
versity Nanjing China Post Code: 210096) //Journal of Engineering for Thermal Energy & Power. - 2016 31
(9). -33~38

For the saturated flow and boiling heat exchange of a surfactant water solution in a microscale a VOF ( volume of

fluid) model and a user-defined function were used to conduct a numerical simulation of the saturated flow and boil—



