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Fig. 1 Physical model for foam metal tubes
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= Brief Introduction of the Urban Sludge Drying Incineration Dis—
posal Technology and Its Process /WEN Zhe WANG Bo FENG Rong ( College of Energy Source and
Power Engineering Shanghai University of Science and Technology Shanghai China Post Code: 200093) XU
Fang-gian ( Shanghai Ruixin Glass Technology and Equipment Engineering Co. Ltd. Shanghai China Post Code:
200120) //Journal of Engineering for Thermal Energy & Power. —2016 31(9). -1 ~8

Described were the basic characteristics of sludge and compared were also the working principles as well as the mer—
its and demerits of the direct heat drying indirect heat drying direct-indirect combined heat drying and other sludge
drying technologies. In this connection the process roads applications and design features of the single ininceration

diluted and mixed combustion in utility boilers diluted and mixed combustion in waste incinerators and in cement
kilns were discussed as the emphasis. It has been known from the analytic results that the sludge drying technologies
are diversal and both drying sludge by using flue gases or steam are feasible. The dried sludge single incineration

diluted and mixed combustion in utility boilers or cooperative disposal in cement kilns all have their own successful
examples and a proper process should be chosen according to the concrete conditions. Among all above-mentioned

the single incineration of dried sludge in a fluidized bed incinerator or diluted and mixed combustion in a utility
boiler is regared as the most promising technical route. However the sludge transmission development of a high effi-
ciency drying technology and equipment items as well as the processing of stinky gases in a plant territory etc. are
deemed as the problems to be studied in the near future. Key words: solid waste sludge disposal drying incinera—

tion

= Numerical Simulation of the Intensified Heat Exchange of
a Nano-luid inside a Foam Metal Tube /SUN Bin LIU Yang ( College of Energy Source and Power En-
gineering Northeast University of Electric Power Jilin China Post Code: 132012) //Journal of Engineering for
Thermal Energy & Power. —2016 31(9) . -9 ~14

To achieve the aim of enhancing the heat exchange the foam metal materials at various radia were inserted into the
core area inside a tube and the nano—particles were also added to the basic solution. Through comparing the temper—
ature and velocity fields inside a foam metal tube and a bare tube and analyzing the effect of the foam metal materi—
als on the enhancement of the heat exchange the influence of the foam metal filling ratio and the nano-fluid on the
flow and heat exchange performance was studied. It has been found that the simulation results are in good agreement
with the test ones given in the literatures to fill the foam metal materials in the core area inside the tube can en—
hance the heat exchange performance and to add the nanofluid can improve the heat exchange effectiveness. Under
the condition of a low flow speed the heat exchange effectiveness will become better and better with an increase of
the filling ratio and the concentration of the nanofluid however there exists an optimum matching between the foam
metal filling ratio and the volumetric fraction of the nanofluid. In the range under investigation when the filling
depth is 6 mm and the volumetric fraction of the nanofluid is 0. 3% the comprehensive heat exchange performance

is regarded as the optimum. To increase the flow speed and the filling ratio can contribute to enhancing the heat ex—
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change however the pressure drop will also increase accordingly. Key words: foam metal nano-luid intensified

heat exchange numerical simulation

= Experimental Study of the Complex Intensified Heat
Transfer by Intermittently Inserting Twisted Strips into a Transversely Slotted Tube /LEI Shi-yi
GUO Ya—un ( College of Environmental and Municipal Engineering Xian University of Architectural Science and
Technology Xi‘an China Post Code: 710055) GUI Miao BI Qin-cheng ( National Key Laboratory on Multi-phase
Flow in Power Engineering Xi“an Jiaotong University Xi“an China Post Code: 710049) //Journal of Engineering
for Thermal Energy & Power. —2016 31(9). - 15 ~19

An experiment was performed with a heat-conduction oil serving as the working medium. In a range of the Re num—
ber between the laminar flows and transition flows ( Re <7000) the flow and intensified heat exchange characteris—
tics of a transversely slotted tube internally inserted with intermittent twisted strips in three different specifications
and continuous twisted strips at the same twist rate ( ¥ =4.13) were investigated. Experimental coorelation formulae
of the resistance coefficient and the Nu number were obtained respectively by performing a regressive analysis of the
test data thus offering a theoretical basis for calculating the complex intensified heat transfer. It has been found that
the comprehensive heat exchange performance of a transversely slotted tube internally inserted with the twisted strips
is superior to that of a bare tube internally inserted with the same twisted strips. The comprehensive heat exchange
performance of a transversely slotted tube internally inserted with the intermittent twisted strips in a length of 66 mm
is superior to that internally inserted with the continuous twisted strips. The test results can provide a theoretical ba—
sis for the reconstruction of heat exchangers and design of novel heat exchangers. Key words: transversely slotted
tube intermittently twisted strip complex intensified heat transfer performance evaluation coefficient ( PEC) resist—

ance characteristics

= Numerical Simulation of the Flow and Heat Exchange Inside a
Heat Pipe Heat Exchanger /XU Hong-bao SUN Tie YANG Xue-feng ( College of Mechanical Engineer—
ing Liaoning Petroleum and Chemical Engineering University Fushun China Post Code: 113001) //Journal of En—
gineering for Thermal Energy & Power. —2016 31(9). -20 ~26

There exists a poor flow and insufficient heat exchange of the fluid at the structural center of the fin in a single heli—
cally finned heat pipe tube bundle. As a result the single helical fin structure was replaced by the novel dual helical
fin structure and the flow field and temperature field after the improvement were simulated and analyzed by using
the software Fluent. It has been found that when Re =500 ~ 6 500 compared with a heat pipe not installed with
fins the heat quantity exchanged by a heat pipe additionally installed with single helical fins will enhance by 33%
to 51% and the friction resistance coefficient will increase by 6% to 24% while the heat quantity exchanged by a

heat pipe additionally installed with the dual helical fins will enhance by 69% to 84% and the friction resistance



