文章编号:1001-2060(2016)10-0020-05

某系统散热器用热管传热性能试验研究

焦学军¹ 盘明旺² 贺 荣²

(1.中国中车株洲时代装备技术有限责任公司 ,湖南 株洲 412000;2.中国中车株洲南车奇宏散热技术有限公司 ,湖南 株洲 4120002)

摘 要: 针对某工程使用的热管散热器传热性能的影响因素 进行了分析 发现充液量是决定热管散热器换热性能的关键 所在。为此 对 Nusselt(努塞尔特) 竖壁膜状冷凝理论解进 行了修正和补充 从而得出适合工程应用的理论计算式。依 据此式计算出某地铁牵引系统热管散热器的理论充液量应 为 2.85 g 再按国家标准规定的热管传热性能试验方法对不 同充液量的热管进行研究 得出了额定功率下散热器热阻随 充液量变化的规律。经分析认为 ,散热器的最佳充液量为 3 g ,该结果经试验证明与理论计算一致。同时通过对该充液 量热管进行传热极限试验 ,证明 3 g 的充液量不仅具有适当 的设计余量 ,还可以保证地铁系统出现过载工况时系统的运 行可靠。

关键词:散热器;重力热管;充液量;传热性能试验中图分类号:TK172.4 文献标识码:A
DOI:10.16146/j. cnki. mdlgc. 2016.10.004

引 言

牵引变流器冷却技术是牵引变流器的关键技术 之一,冷却效果关系到牵引变流器部件的稳定运行、 使用安全和使用寿命等^[1]。

热管散热器利用热管可以独立改变蒸发端和冷 凝端的传热面积,以较小的面积输入热量,以较大的 面积散出热量,因此热管散热器是半导体器件冷却 的重要方式之一。重力热管没有吸液芯具有结构简 单、制造工艺成熟、传热性能优良和可靠性高的特 点,在地面设备中应用非常广泛。对比水冷和翅片 的冷却方式,热管散热器在地铁变流器冷却中具有 明显的优势,目前地铁牵引变流器的冷却技术通常 采用的是重力式热管散热^[2-3],依靠走行风冷却。

热管是散热器的关键零件,对散热性能起到决 定性作用,因此开展对热管传热性能的试验研究非 常重要。影响热管传热性能的因素主要有: 热管的 几何尺寸、倾角、充液量、工质的物理性质和管内工 作温度等,其中,充液量和倾角最为重要。关于充液 量与倾角对重力热管传热影响的研究主要为理论分 析和试验研究,大多数结论都建立在试验基 础上^[4]。

本文以某地铁牵引系统变流器热管散热器为研 究对象 撤热器结构如图 1 所示,采用铜 - 水热管, 热管的工作温度由使用环境温度和许用温度决定, 一般是 20~80 ℃。该热管散热器负责为 8 个 IGBT (绝缘栅双极晶体管)器件散热,总损耗 8 000 W,单 个 IGBT 损耗 1 000 W,IGBT 模块安装在铝基板上, 热管插在铝基板下方,每个 IGBT 下方对应 12 支长 300 mm 的 *Φ*16 热管。该热管散热器的传热路径 是: IGBT 热损耗→铝基板→热管→翅片→冷却空 气。理论分析时假设 IGBT 模块均匀的将热损耗传 递给了下方的热管,因此每支热管的额定传热量是 83.3 W。

鉴于变流器体积应尽量小,为了节省散热器的 空间,在热管倾角10°和15°两种情况进行对比,除 了铝基板上钻孔的倾角不一样,其余各部件都相同, 制作两种单模块的热管散热器试验件在同样的功率 和风速的工况下进行热性能试验,如图2所示。试 验测试数据如表1所示。

表1 不同倾角单模块热管散热器试验对比

Tab. 1 Comparison of single module heat pipe radiator with different inclination angles

倾角/(°)	功率/W	风速/m・s ⁻¹	¹ 热阻 <i>R</i> /K•W ⁻	「 压降 △P/Pa
10	1 000	6	0.039 11	53.3
15	1 000	6	0.038 34	54
差异	١	٨	2%	1.3%

收稿日期: 2015 - 11 - 06; 修订日期: 2016 - 01 - 19

作者简介: 焦学军(1971-), 男湖南长沙人, 中国中车株洲时代装备技术有限责任公司高级工程师.

图 1 热管散热器结构示意图 Fig. 1 Structure of heat pipe radiator

表1显示两种散热器整体热性能差别不大,所 以最终将热管倾角设计为10°散热器的热管几何尺 寸、倾角、工质和工作温度等因素都已经固定,充液 量将是决定热管性能的关键因素。

依据 GB/T 14812 – 2008 规定的试验方法^[5], 着重对不同充液量的热管传热性能进行研究,得到 了合适的充液量,并且与理论分析结果进行对比,对 比分析表明理论计算与试验结果基本一致。

1 充液量的理论计算方法

由于热管的结构特征其传热极限主要有携带、 干涸和沸腾极限。根据热流密度选择合适注液量, 保证不能出现以上传热极限,充液量选择太多或太 少对热管的工作都是不利的,如果出现传热极限将 会导致热管温度波动大,严重时甚至会造成热管烧 毁。Streltsov 以经典的 Nusselt 竖壁膜状冷凝理论解 为基础^[6] ,得到无芯重力热管充液量与热流量之间 的关系式:

$$G = \left(\frac{4}{5}l_{\rm e} + l_{\rm a} + \frac{4}{5}l_{\rm e}\right) \left[\frac{3\mu_{\rm l}\rho_{\rm l}\pi^2 d_{\rm i}^2}{h_{\rm fg}g}\right]^{1/3} \sqrt[3]{Q} \quad (1)$$

式中: *G*—充液量 ,g; l_c —热管冷凝段的长度 ,m; l_a —热管绝热段的长度 ,m; l_c —热管蒸发段的长度 m; μ_1 —液体的动力黏度 ,kg/m • s; ρ_1 —液体的密 度 kg/m³; d_i —热管的内径 ,m; h_{fg} —液体的汽化 潜热 J/kg; *g*—重力加速度 ,m/s²。

刘纪福认为式(1) 在经过某些修正和补充之后 可以作为选择充液量的依据^[6],这些修正和补充包 括:热管倾角的影响、蒸汽和液膜在汽 – 液界面上摩 擦的影响,管内蒸汽含量以及工艺结构对充液量的 附加要求等因素。对于重力辅助无芯热管和纵向槽 道吸液芯热管,提出了工程上适用的具有适量过盈 充液量的选择方法。

图2 热管示意图

Fig. 2 Schematic diagram of heat pipe

$$G = \xi_{\phi}\xi_{\tau}G_{1} + G_{v} + G_{o} \tag{2}$$

 ξ_{ϕ} 一倾角修正系数 按下式计算:

$$\xi_{\phi} = \frac{1}{\sqrt[3]{\sin\phi}} \tag{3}$$

式中: ϕ 一热管与水平方向的夹角。 ξ_{τ} 一摩擦修正 系数; G_1 一液膜所含液量; 蒸汽和液膜在汽 – 液界 面上摩擦的影响 ,是有摩擦时的液膜厚度与无摩擦 时液膜厚度的比值^[6]。

由于某地铁牵引系统变流器的热管散热器使用 的热管是纵向槽道热管,对于纵向槽道热管内壁上 的总液量按下式计算:

$$G_{1} = \left(\frac{3}{4}l_{e} + l_{a} + \frac{3}{4}l_{e}\right) \left[\frac{3\mu_{l}\rho_{1}\left(\pi d_{i} + 2NS\right)^{2}}{h_{fg}g}\right]^{1/3} \sqrt[3]{Q}$$
(4)

式中: *N*一槽道数目; *S*一槽道深度,m; *G*,一蒸汽含量g。按下式计算:

$$G_{v} = \frac{\pi}{4} d_{v}^{2} L \rho_{v} \approx \frac{\pi}{4} d_{i}^{2} L \rho_{v} \qquad (5)$$

式中: d_v 一蒸汽流道的直径近似等于热管的内径 d_i ; L一热管总长度, m; ρ_v 一管内蒸汽的密度, kg/m^3 。

由于加工工艺的要求,或者由于安装的需要,在 蒸发段的下方伸出一段管子,置于蒸发段之外,这一 段管长不参与换热,这部分充液量按下式计算:

$$G_{o} = \frac{\pi}{4} d_{1}^{2} l_{o} \rho_{1} \sin\phi \qquad (6)$$

式中: *G*。一工艺结构所需附加液量,g;*l*。一蒸发段下方伸出的管长,m。

由于该热管散热器,蒸发段全部插在铝基板的 盲孔内,因此没有 G。,蒸发段之上的热管全部由空 气冷却,因而没有绝热段,所以对于这个散热器的热 管充液量可按下式计算:

$$G = \xi_{\phi} \xi_{\tau} \Big(\frac{3}{4} l_{e} + \frac{3}{4} l_{e} \Big) \Big[\frac{3\mu_{i} \rho_{1} (\pi d_{i} + 2NS)^{2}}{h_{fg} g} \Big]^{1/3}$$

$$\sqrt[3]{Q} + \frac{\pi}{4} d_{i}^{2} L \rho_{v}$$
(7)

热管外径 φ16 mm,壁厚 1 mm,纵槽道,长度 300 mm,倾斜角度 10°热管传热功率为 83.3 W时, 理论计算得到合适的充液量是 2.85 g,约占热管总 容积的 6.3%。

2 试验概述

2.1 试验系统概述

热管传热性能试验台是参考 GB/T 14942 -2008 制作的,采用水冷方式,系统原理如图 3 所示, 实物照片如图 4 所示,主要由热管安装架、加热部 分、水冷部分、测温系统和其它仪器仪表组成。热管 安装架将热管支撑起来,保证热管倾角为 10°。所 有设备和仪器都由 1 个交流稳压电源供电,加热器 给热管的蒸发段加热,调压器调节加热功率,通过电 压表和电流表测量计算得到功率值。水套为热管的 冷凝段冷却,1 个潜水泵负责水循环,调节球阀到试 验需要的流量,一般流量比较大,是为了使水温升很 小,水泵内的加热器将水温加热到需要的温度 温度 继电器控制加热器的启停,保证水温恒定。热管绝 热段裸露在空气中对热平衡误差影响非常小,所以 为了操作方便,本试验没有对热管绝热段进行绝热 处理。试验需要测量加热部分的电压、电流,水冷部 分的水温、水流量,测量蒸发段2点温度、冷凝段2 点温度。测试用的仪器仪表精度如表2所示。

图 3 热管传热性能试验原理图 Fig. 3 The principle diagram of Heat pipe heat transfer performance

图 4 热管传热性能测试台

Fig. 4 Heat pipe heat transfer performance test system

表2 仪器仪表精度

Tab. 2 Instrument precision

测量用仪器仪表	测量参数	测量精度/%	
T 型热电偶	水温、热管表面温度/℃	I 级	
手持式数据采集器	温度/℃	0.4	
流量计	水流量/L・min ⁻¹	1	
电压表	电压/V	0.5	
电流表	电流/A	0.5	

2.2 试验方法

试验条件: 加热功率 83.3 W,水温设定 45 ℃, 流量 40 L/h 热管倾斜 10°。

首先,通过试验确定 83.3 W 时热管充液量的 下限和上限值,从1~6g每隔1g制作1支热管进 行试验,一般蒸发段出现温度急剧上升或温度出现 明显震荡,很长时间都无法稳定的情况则认为热管 达到了传热极限。

为了得到热管的最佳充液量,进一步缩小范围, 在2~4.5g每隔0.5g制作热管进行试验,为了降 低试验误差,每种充液量制作5支热管,测量得到试 验数据。

对最佳充液量的热管进行传热极限试验。

3 试验数据处理

热管蒸发段的加热功率按下式计算:

 $P = UI \tag{8}$

式中: *P*—加热功率 ,W; *U*—加热电压 ,V; *I*—加热电 流 ,A。

绝热段的散热损失忽略,所以加热功率即热管 的传热量。热管蒸发段和冷凝段的温差:

$$\Delta T = t_{\rm wc} - t_{\rm we} \tag{9}$$

式中: ΔT —蒸发段和冷凝段的温差,K; t_{we} —热管 冷凝段表面平均温度,C; $t_{we} = (t_3 + t_4)/2$; t_{we} — 热管蒸发段表面平均温度,C; $t_{we} = (t_1 + t_2)/2$ 。 热管的热阻按下式计算:

$$R = \Delta T/P$$
 (10)
式中: R —热阻 K/W。

4 试验结果及分析

4.1 额定功率下热管的充液量范围

在热管充液量是1g时,蒸发段温度比其它热 管都高,而且温度急剧上升,认为热管达到了干涸极 限,所以1g是热管充液量的下限。2~5g充液量 时,热管能够稳定的传输热量,经过一段时间后可以 达到稳态。当热管充液量增大到6g时,蒸发段和 冷凝段温度波动差不多有5℃,如果加大功率的话, 热管内部甚至出现叮叮的响声,这是由于热管蒸发 段的水被抛向冷凝段冲击管壁造成的,可以认为热 管达到了携带极限,所以6g是热管充液量的上限。 4.2 热管的最佳充液量

2~4.5g每种充液量制作5支热管进行传热性 能试验 得到6组数据,计算各测温点平均温度值, 再计算热阻值,得到的试验结果如表3所示。

表 3 试验数据 Tab. 3 Test data

注液量 G/g	t_1 / C	t_2 / C	<i>t</i> ₃ /°C	t_4 / °C	$\Delta T/\mathrm{K}$	$R/K \cdot W^{-1}$
2	55.87	56.21	54.54	53.68	1.93	0.023 17
2.5	55.44	55.1	54.98	53.5	1.03	0.012 36
3	54.82	55.06	54.1	54.1	0.84	0.010 08
3.5	55.9	54.26	53.76	53.42	1.49	0.017 89
4	57.94	54.72	54.5	53.42	2.37	0.028 45
4.5	60.64	55.06	54.92	53.16	3.81	0.045 74

如图 5 所示:加热功率为 83.3 W 时,充液量与 热阻的变化规律,可以看出当充液量为 3 g 时,热阻 值最小,且蒸发段两点的温度最低,因此可以判定 3 g 是额定功率下的最佳注液量。

4.3 传热极限试验

牵引变流系统运行时可能出现过载工况,热管 散热器在变流器工况最恶劣的情况仍然能持续工作 保证系统的可靠性,要求热管在功率过载时也必须 能够工作。试验设计了3种工况:1.5倍功耗(125 W)、2倍功耗(167和300W)的情况进行传热性能 试验,试验数据如表4所示。当功率为额定功率2 倍时,热管还能稳定的传热,但功率增加到300W 时,热管蒸发段温度剧烈上升,为了保证试验设备的 安全性,只能停止加热,这时热管达到了传热极限。

表4 传热极限试验数据

Tab. 4 Test data of heat transfer limit

功率 P/W	t_1 / C	t_2 /°C	$t_3 / ^{\circ} \mathbb{C}$	t_4 / °C	$\Delta T/\mathrm{K}$	热阻 R/K・W ⁻¹
125	59.3	59.1	57.9	57.6	1.45	0.011 60
167	64.5	64.8	62.5	62.6	2.1	0.012 57
300	—	—	—	—	—	—

图 5 充液量 – 热阻曲线

Fig. 5 Curve of filling quantity with thermal resistance

5 结 论

本文介绍了一种热管最佳充液量的理论计算方法,对不同充液量的热管进行试验研究,通过理论计算与试验结果进行对比研究,得出了以下结论:

(1)理论计算额定功率的适合充液量是 2.85g 約占热管总容积的 6.3%;

(2) 对某地铁牵引系统散热器的热管充液量进行了试验研究,通过试验得出最佳充液量是3g,并 且具有适当的过余,单根热管功耗≤300 W 时 3g 的充液量可满足散热器可靠性要求;

(3)对比理论计算和试验研究,二者充液量的 偏差为5%,数据基本吻合,为后续的地铁热管散热 器的设计提供了重要参考依据;

(4)此次仅针对该热管散热器的热管进行了理 论计算和试验验证,热管在地铁散热器上的产品验 证将在下一步工作中进行。

参考文献:

[1] 翁星方. 城轨车辆用牵引变流器的研究与开发[D]. 成都: 西 南交通大学 2010.

WENG Xing-fang. Research and development of the traction converter in urban rail transit vehicles [D]. Chengdu: Southwest Jiaotong University 2010.

[2] 李春阳 徐景秋. 热管散热器在新型变流装置中的应用 [J]. 机 车电传动 2005(2):14-18.

LI Chun-yan ,XU Jing-qiu. Application of heat-pipe heat sink to new converter [J]. Electric Drive for Locomotives ,2005(2):14 -18.

[3] 贺 荣 周乃君,李春阳.CRH2 高速动车组 CI 用热管散热器
 数值模拟与试验研究 [J].中南大学学报,2014(10):3645
 -3650.

HE Rong ZHOU Nai-jun ,LI Chun-yan. Numerical simulation and experimental study on heat pipe radiator for the convertor inverter in CRH2 EMUS [J]. Journal of Central South University ,2014 (10):3645-3650.

[4] 庄 骏 涨 红 热管技术及其工程应用[M].北京:化学工 业出版社 2000.

ZHUANG jun ZHANG Hong. Heat pipe technology and engineering application [M]. Beijing: Chemical Industry Press 2000.

- [5] GB/T 14812 2008 热管传热性能试验方法[S].
 GB/T 14812 2008 ,Testing method of heat transfer performance of heat pipes[S].
- [6] STRELTSOV A I. Theoretical and experimental investigation of optimum filling for heat pipes [J]. Heat Transfer-Sovier Research , 1975 7(1).
- [7] 刘纪福. 重力辅助热管充液量的分析和选择 [D]. 哈尔滨: 哈尔滨工业大学 ,1982.

LIU Ji-fu. Analysis and selection of gravitational heat pipe liquid injection [D]. Harbin: Harbin institute of technology ,1982.

(单丽华 编辑)

temperature and the output power as the independent variable and the objective function ,respectively. The system performance was compared under two conditions ,and the influences of system stages on the performance were analyzed. The results show that the use of diversion technology can improve the optimal evaporation temperature and the performance. With the increase of the stages ,the performance is gradually improved. When the stage is five ,the output power and the thermal efficiency with diversion are increased by 189.47 kW and 0.31% relative to ORC system ,respectively. There is a great significance in using cascade diversion technology ,in term of achieving a greater degree of energy recycling. **Key words**: cascade diversion ,Organic Rankine cycle ,evaporation temperature genetic algorithm ,stages of system

某系统散热器用热管传热性能试验研究 = Experimental Study for the Heat Transfer of Heat Pipe used as Heat Sink for Metro Vehicle Traction Drive System [刊,汉] JIAO Xue-jun(CRRC Zhuzhou Times Equipment Technology Co. ,Ltd ,China ,Post Code: 412000) ,PAN Ming-wang ,HE Rong(CRRC CSR-AVC Thermal Technolo-gies (Zhuzhou) Co. Ltd. ,China ,Post Code: 412000) //Journal of Engineering for Thermal Energy & Power. -2016 31(10). -20~24

Gravity heat pipe heat sink cooling technology is preferred for metro vehicle traction drive system. This paper first analized the factors affecting the heat transfer capability of the heat pipe as a heat sink for a subway and it was found that the liquid filling is the key to the performance of a heat pipe. Then the Nusselt vertical wall film condensation theory formula was corrected to be suitable for the engineering application and used to determine the filling quantity of metro traction system radiator with heat pipe which was calculated at 2.85 g. Additionally according to the national standard test method for heat pipe heat transfer performance of different filling quantities of heat pipe were studied and the thermal resistances with different liquid filling amount were obtained under rated power. The optimum filling amount was then determined to be 3 g through the analysis of experimental data indicating the good agreement between test results and theory calculation. Meanwhile the heat transfer limit test verified that the 3 g filling amount has an appropriate design margin and can ensure the traction system reliability under overload conditions. **Key words**: metro vehicle traction drive system heat sink arrivity heat pipe liquid filling quantity heat transfer experiment

气膜冷却叶片热冲击分析网格生成技术 = Grid Generation Technology for the Analysis of Air-film Cooling Vane subjected to Thermal Shock Load [刊 汉] GUAN Peng, AI Yan-ting ,BAO Tian-nan(Liaoning Key Labo-ratory of Advanced Measurement and Test Technology for Aircraft Propulsion System, Shenyang Aerospace Universi-ty, Shenyang, Liaoning, China, Post Code: 110136), SHI Xiao-jiang (Key Laboratory of Aeroengine High Alti-tude Simulation Technology, AVIC Gas Turbine Research Institute, Jiangyou, Sichuan, China, Post Code: 621703) // Journal of Engineering for Thermal Energy & Power. - 2016 31(10). - 25 ~ 31

Mesh division is the basis for thermal shock numerical simulation of film cooling blade and turbine cascade. Because of the complicated structure of film cooling blade as well as strict requirements on the first layer thickness for numerical heat transfer simulation, grid generation scheme is the key of this issue. In this paper, the geometry of