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Gas Turbine Il nozzle guide vane was used and structured grids of high quality were generated using the method of
block topology without cutting geometry. The near wall grid size was optimized according to the requirement of tur—
bulence model. Based on the ground experimental data boundary conditions were defined and the generated grids
were tested in both steady-state and transient simulations. The results show that integration of grid generation can
reduce the system error and improve the calculation accuracy. The first layer has a greater influence on the quality
of grid so it should be determined by considering the y © value. The simulation results using this structured grid a—
gree well with the experimental data indicating the engineering application value of the grid generation technology
presented in this paper. Key words: film—cooling thermal shock load structured grid block topology first layer

thickness temperature field

1 000 MW = Numerical Analysis of Thermal Stress and
Steam Tightness for the High-pressure Cylinder of a 1 000 MW Nuclear Steam Turbine in the Startup
Phase WEI Hong-ming CAI Lin HOU Xiu-qun XIE Dan-mei GAO Jian-shu ( Power and Mechanical
School Wuhan University Wuhan Hubei China Post Code: 430072) //Journal of Engineering for Thermal Energy
& Power. -2016 31(10). -32 ~37

Steam turbine high—pressure casing is the steam passage component with high temperature and pressure where its
inner wall surface contacts with steam directly. When the unit commitment and load change the drastic change of
steam parameters is likely to cause deformation of cylinder body. The operating data of nuclear power plant show that
the high-pressure cylinder of nuclear power steam turbine is prone to excessive stress deformation and steam leak—
age phenomenon. In this paper the finite element method was used to calculate the startup process of 1000MW nu—
clear power halfspeed turbine high-pressure cylinder and the temperature and stress situation of high pressure cyl—
inder during the boot process were analyzed followed by the study of the vapor tightness of cylinder split. The results
show that during the boot process the maximum thermal stress of high-pressure cylinder occurs in the moment the u-
nit just reaches the rated load (217 MPa) . And the temperature difference and stress of the shaft seal of high-pres—
sure cylinder is relatively large while the contact pressure of split is fairly small. Key words: nuclear turbine cyl-

inder deformation thermal stress steam tightness

= Test and Estimation of Heat Loss for Circulating Fluidized
Bed Boiler JIAO Tong-shuai YAN Wei-ping ( North-China Electric Power University Baoding China
Post Code: 071003) // Journal of Engineering for Thermal Energy & Power. —2016 31( 10) . —38 ~42

With the current national standard and industry standard the separator and the boiler body are considered to be in
the same specific heat load when estimating the heat loss of circulating fluidized bed boiler. In order to evaluate the
rationality of this method a 440t/h circulating fluidized bed coalfired utility boiler was tested to quantify the heat
loss and its uncertainty was analyzed. The boiler was divided into 134 zones and 1333 measurement points. And the
heat loss of the boiler system was measured at 0. 731% with the uncertainty of 0. 08% indicating great test accura—

cy. According to the national standard and industry standard the estimated heat loss however was only 0.432%.



