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spectively indicating a reasonable accuracy and generalization ability of the model. With the evaluation index of
neural network model the simulation and prediction results of the two models were compared and analyzed. The re—
sults show that the NO,, emission model established by the support vector machine method has faster convergence
speed higher accuracy and better performance than the one based on BP neural network model. Key words: boiler

NO,, emission BP neural network Support vector machine

= Performance Optimization of Primary Frequency Regula—
tion based on Modeling of Turbine and its Governing System SHENG Kai ( State Grid Hunan Elec—
tric Power Corporation Research Institute Changsha China Post Code: 410007) JIANG Xiaodong ( Shenhua Shen—
wan Hefei Lujiang Power Generation Co. Ltd Hefei China Post Code: 231555) ZHOU Nian-guang SONG Hai-
hua ( State Grid Hunan Electric Power Corporation Research Institute Changsha China Post Code: 410007) //
Journal of Engineering for Thermal Energy & Power. —2016 31( 10) . —109 ~ 114

The performance of the primary frequency regulation in thermal power unit is of importance to the stability of power
system and its economy. To optimize the performance a model of steam turbine and its governing system were estab—
lished based on system identification and a key element of valve discharge characteristics was introduced into the
model for its optimization. Through the improved model performance factors of primary frequency regulation were
quantitatively analyzed. According to analysis result the valve discharge characteristic function was corrected and
the main steam pressure compensation was also brought into consideration then control parameters of primary fre—
quency regulation were re-tuned by considering robustness. Consequently as indicated by the actual primary fre—
quency regulation test the performance of primary frequency regulation was satisfactory under multidoad conditions.
Key words: steam turbine and its governing system modeling primary frequency regulation valve discharge char—

acteristics main steam pressure parameter tuning

= Data Processing of Air Damper Performance Characteris—
tics in Boiler Cold Test and Its Application LIU Fuguo LIU Ke CUI Fuxing HOU Fan-jun ( Shan—
dong Electric Power Research Institute Jinan China Post Code: 250003) //Journal of Engineering for Thermal En—
ergy & Power. —2016 31(10). - 115 ~ 121

A model for calculating the flow resistance from the secondary air chamber to furnace exit in boiler was established

then data processing procedure of air damper characteristics test was put forward accordingly: assuming the local re—
sistance coefficient under 100% baffle opening is known as constant furnace resistance coefficient is calculated from
this fully opening damper test then resistance coefficients under other openings are obtained according to the fur—
nace resistance coefficient. These coefficients can be used to calculate velocity in secondary air nozzles when boiler
is put into operation. This makes it possible of monitoring of air and fuel distribution along furnace height which has
remarkable significance for optimizing boiler combustion and. reducing steam temperature fluctuations. Key words:

boiler secondary air damper resistance characteristics velocity in secondary air nozzles



