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3 = Comparison of the Flow and Heat Transfer
Performance of Three Types of Trailing Edge Cooling Structure in Blades of a Gas Turbine /LIU
Zheng CHEN Liu DAI Ren (College of Energy Source and Power Engineering Shanghai University of Science
and Technology Shanghai China Post Code: 200093) //Journal of Engineering for Thermal Energy & Power.
-2016 31(11). =32 ~37

Through a flow and heat coupling calculation and test verification compared were the flow and heat transfer per—
formance of the trailing edge cooling structure with cylindrical holes in a row and two types of cutback at various
Reynolds numbers and cooling air mass flow rates. It has been found that the cylindrical holes in a row have an ex—
cessively high flow resistance and due to the limitation of the air supply pressure the cooling air flow rate is exces—
sively low and the cooling effectiveness is not good enough leading to erosion at the trailing edge at a very high
temperature. To provide a blade with a cutback film cooling structure at the trailing edge on the pressure surface
can lower the flow resistance and enhance the cooling air flow rate. To adopt the chord-wise rib and pinfin cooling
structure inside the slot can intensify the heat exchange and improve the cooling efficiency. At a same cooling air
flow rate the pressure difference required by the flow in the cutback cooling structure will notably drop and the
width of the wake of blades in a cascade will also become small thus favorable for reducing the flow losses and sur—
face heat transfer in cascades at the downstream. Key words: cylindrical holes in a row cutback cooling efficien—

cy wake trace configuration

= Study of the Prediction of the Exhaust Steam Enthalpy of
a Steam Turbine Based on the Supporting Vector Regression Machine /MI Lan (Wuhai Vocational
Technical College Wuhai China Post Code: 016000) WANG Wen-bin (Yalong River Basin Hydropower De—
velopment Co. Ltd. Chengdu China Post Code: 610051) //Journal of Engineering for Thermal Energy & Pow—
er. —2016 31(11). -38 ~42

In the light of such demerits existing in the prevailing steam turbine exhaust steam enthalpy calculation method es—
pecially the neural network prediction method as difficult to determine the network structure and easy to meet with
a local extremum etc. proposed was a new steam turbine exhaust steam enthalpy prediction method based on the
supporting vector regression machine. On the basis of analyzing the main factors influencing the prediction of the
exhaust steam enthalpy of a steam turbine to simplify the calculation flow path and enhance the prediction efficien—
cy the extraction steam enthalpy in the section No.7 and 8 was excluded in the input parameters which possibly
located in the wet steam zone. On this basis a model for predicting the exhaust steam enthalpy of a steam turbine
was established based on the supporting vector regression machine. The simulation results in the cases show that the
method in question has a relatively strong generalization ability and can quickly and accurately fulfill an on-ine pre—

diction of the exhaust steam enthalpy of a steam turbine. Key words:steam turbine exhaust steam enthalpy sup-



