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Fig. 3 Physical model and grid distribution
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Fig. 4 Comparison of the numerical calculation

results with the cold-state flow field test ones
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Fig. 5 Comparison of the numerical calculation results

with the cold-state concentration field test ones
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= Gas-Solid Two-Phase Flow Characteristics of the Pulverized
Coal Burner with Impinging Pre-combustion Chamber /WANG Shuai FAN Bao-guo LIU Hai-yu JIN
Yan( College of Electrical and Power Engineering Taiyuan University of Technology Shanxi Taiyuan 030024)//
Journal of Engineering for Thermal Energy & Power. -2016 31(11). —43 ~49

The gas-solid two—-phase flow characteristics of the pulverized coal burner with impinging pre-combustion chamber
were numerically (by Fluent) and experimentally studied. The flow field fuel concentration and particle trajectories
of the burner were examined under different secondary air angles. It is concluded that there is open air in the burn—
er when the secondary air angle is(30° 45°). The tangential and axial angles of the secondary air have an impor—
tant influence on the air flow spreading angle vortex intensity and flow jet length. The flow field and particle trajec—
tories become more reasonable when the secondary air angle is (5° 20°). Key words: pulverized coal burner; gas—

solid two—phase flow; experimental research; numerical simulation

= Experimental Study of the Influence of Various
Metal Materials and Seawater Temperature on Seawater-caused Fouling /YANG Da-zhang LV Jing
QIU Yu=in (Shanghai University of Science and Technology Shanghai China Post Code: 200093) LIU Jian—
hua (Shanghai City Key Laboratory on Multi-phase Flow and Heat Transfer in Power Engineering Shanghai Chi-
na Post Code: 200093) //Journal of Engineering for Thermal Energy & Power. -2016 31(11). -50 ~54

Experimentally studied were the fouling phenomena existing in the heat exchange process of seawater and compared
were the fouling characteristics of four kinds of metal in seawater 1i.e. a galvanized iron plate brass copper and
stainless steel material and changes of the amount of fouls on the surface of four kinds of metal. The test results
show that the fouling morphology and amount of fouls formed in seawater are varied in metals the galvanized iron
plate has the largest amount of fouls and the copper materials have the comparatively serious corrosion but the smal—
lest amount of fouls on the surface. A XRD (X-Ray Diffraction) and EDX (Energy Dispersive X-Ray) phase anal-
ysis was performed of the seawater-caused fouls. It has been found that the phase composition of the seawater—
caused fouls formed on the surface of various metal materials is varied and the constituents of the seawater-caused
fouls on the surface of a galvanized iron plate are mainly the products produced in the process of erosion and corro—
sion of zinc however those on the surface of stainless steel materials are mainly magnesia hydroxide. Changes of
the amount of fouls formed on the surface of a galvanized iron plate and a brass material in seawater at 80 °C and
60 °C were compared. It has been found that the amount of fouls formed on the surface of the galvanized iron plate

will increase with a decrease of the seawater temperature however that formed on the surface of brass materials



