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= A Differential Evolution Algorithm with Hybrid Search
Strategy based on Multi-population for Heat Exchanger Network Synthesis DUAN Huan-huan CUI
Guo-min CHEN Jia—Xing CHEN Shang (Research Institute of New Energy Science and Technology University of
Shanghai for Science and Technology Shanghai China Post Code: 200093) // Journal of Engineering for Thermal

Energy & Power. -2016 31(12).— 1~6

The basic differential evolution (DE) algorithm dropped into the local optimum when applied in the synthesis of
heat exchanger networks. To solve this phenomenon of premature convergence a DE algorithm incorporated with a
hybrid search strategy based on multi-population was proposed in this paper. Firstly the opposite population of ini—
tial population was repeatedly used to improve the diversity of the population. Accordingly the population was up—
dated using different optimization strategies to improve the ability of local exploration. The results showed that this
novel method could further enrich the population diversity and overcome the flaw of premature convergence. Moreo—
ver the convergent speed and the stability of the algorithm were significantly enhanced. Key words : differential evo—

lution algorithm multi-population hybrid search heat exchanger network

= An Experimental Investigation on the Pres—
sure Oscillation Induced by the Steam Jet Condensation in Water Flow within a Vertical Pipe
ZHANG Jia ZHANG Chao (Xi“an Thermal Power Research Institute Co. Ltd Xi‘an Shaanxi Province China Post
Code: 710054) XU Qiang GUO Lie—jin(State Key Laboratory of Multiphase Flow in Power Engineering Xi’ an
Jiaotong University Xi” an Shaanxi Province China Post Code: 710049) // Journal of Engineering for Thermal

Energy & Power. —2016 31(12).— 7 ~11

An experimental investigation on the pressure oscillation induced by the steam jet condensation in water flow in
pipes was conducted in this work. The saturation vapor with mass flow rate 0 ~ 150 kg * m > * s ™' and pressure
0.2 ~0.4 MPa was injected into the water flow in the vertical pipe through a nozzle of diameter 8 mm. The water
temperature and pressure ranges of the pipe flow are 30 ~70 C and 0. 11 ~0. 15 MPa respectively. The pressure
fluctuation signal was captured by detecting the wall pressure signal. This paper systematically analyzed variations
of the pressure wave which had low frequency and high amplitude with time at low steam mass flow rate and presen—
ted the quantitative changes of pressure oscillation amplitude with steam mass flow rate and subcooled water temper—
ature. And also included was the probability density function distribution the variation of skewness coefficient and

kurtosis coefficient of pressure fluctuation signal. Key words:steam condensation pressure wave the nozzle



