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R134a = Correlation between the Two-phase Flow Pattern of R134a and
the Noise of the Flow Pressure Drop in a Small Tube HOU Han-wei XIA Jiajun XIONG Wei—<chen
(Center for Space Technologies School of Engineering Sun Yat-Sen University Zhuhai Guangdong China Post
Code: 519082) HUANG Li-ping (School of Physics and Engineering Sun Yat-Sen University Guangzhou Guang—
dong China Post Code: 510275) HE Zhen-hui (State Key Laboratory of Optoeletronic Materials and Technologies
Guangzhou Guangdong China Post Code: 510275)//Journal of Engineering for Thermal Energy & Power.
-2016 31(12).—- 12 ~18

The nonvisual identification of two phase flow patterns is needed in application. At present electrical capacitance
tomography and pressure drop measurement are commonly used techniques in laboratories. In this paper we presen—
ted the relationship of the noise of the two-phase flow pressure drop and the flow pattern of R134a in a tube of 2mm
diameter. A high-speed camera was used to observe and record the flow patterns through a quartz—tube window; and
a single—chip sampling system was used to record the pressure drop of the test tube with a sampling frequency of
1 kHz. In order to obtain the noise frequency characteristics of the pressure drop the Fast Fourier Transforms
(FFT) was employed to convert the pressure drop data from time-domain to frequency spectra. Then we analyzed
the source of pressure drop noise and distinguished a kind of flow pattern from another based on the noise character—
istics. It is shown that wave flow slug flow and annular flow have different features in the DC component and low
frequency noise of the pressure drop. The feasibility of using the dimensionless parameters to identify the flow pat—
terns was discussed and a theory basis for the ondine identification of nonvisual two-phase flow pattern was provid—
ed with the fact that further investigation is warranted to verify its universality. Key words:two-phase flow flow

pattern pressure drop noise Fast Fourier Transform

= Study on High Precision Simulation Model of Biaxial Gas Turbine
ZHENG Wei-dong WANG Pei-hong (Key Laboratory of Energy Thermal Conversion and Control of Minis—
try of Education (Southeast University) Nanjing Jiangsu China Post Code: 210096) // Journal of Engineering

for Thermal Energy & Power. —2016 31(12).— 19 ~24

A high precision simulation model of biaxial gas turbine is developed based on the traditional ones in order to over—
come some previous drawbacks. In this modeling process the variations of specific heat capacity of air and fuel gas
are taken into consideration. The fact that the components of fuel gas change with different load and the temperature
of the turbine blades affects the cooling air significantly is considered. A simplified model of calculating the total
work of cooling air is presented to satisfy the need of simulation. The steady simulation resultsshow that the im—

proved simulation model agrees well with the experimental data and is more accurate than previous simulation mod—
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els. The dynamic simulation results indicate that the gas turbine dynamic model can accurately simulate the dynam—
ic performance and be applied to the design of corresponding control systems of gas turbines. Key words:gas tur—

bine simulation model high precision dynamic model

= Effect of Particle Diameter on Erosion Wear Performance of Radial
Flow Turbine DUAN Zhi—giang LI Xue-min(School of Energy and Power Engineering Huazhong Univer—
sity of Science and Technology Wuhan China Post Code: 430074) // Journal of Engineering for Thermal Energy &

Power. -2016 31(12).- 25 ~30

In order to investigate the influence of particle diameter on erosion performance of radial flow turbine delivering sol—
id—gas two-phase flow medium the impinging velocity impact angle and other parameters between solid particle and
the surface of flow—-passing parts were evaluated numerically. According to simulation results the particles with
small diameters were distributed relatively homogeneously in the flow path of volute and blade and almost had no
collision with the surface of flow—-passing parts so the erosion wear of flow-passing parts was relatively weak. By
contrary the solid particles with large diameters tended to pass into the flow pass of the impeller in the tail of the vo—
lute in the flow pass of the impeller and the particle was apt to move forward to the pressure surface and impacted
the pressure surface of the blade. With the increase of particle diameter the particle would impact the pressure sur—
face with a larger angle and velocity and there are multiple collisions with the pressure surface resulting exacerba—
ted erosion wear of the middle of the pressure surface near the shroud and the suction surface near the exit. Key

words :radial flow turbine erosive wear solid-gas two-phase flow motion trajectory numerical simulation

= Influences of Vortex Caused by the Mi—
cro-cylinder in the Blade Leading Edge on the Aerodynamic Performance of Low-pressure Axial Fan
CHEN Xiao+¥ei HUANG Dian-Gui (School of Energy and Power Engineering University of Shanghai for Sci—
ence and Technology Shanghai China Post Code: 200093) //Journal of Engineering for Thermal Energy & Power.

-2016 31(12).— 31 ~37

In order to improve the performance of axial fan this paper presented a flow control method by installing a micro—
cylinder in the leading edge of the axial fan blade and investigated the corresponding performance by using CFD.

The results show that the micro-eylinder can improve the fan performance within a certain range of operating condi—
tions. By comparing the flow field and the distribution of the boundary vorticity flux between the axial fans with and

without the micro-eylinder the improvement of the axial fan performance was analyzed. Key words:flow separation



