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els. The dynamic simulation results indicate that the gas turbine dynamic model can accurately simulate the dynam—
ic performance and be applied to the design of corresponding control systems of gas turbines. Key words:gas tur—

bine simulation model high precision dynamic model

= Effect of Particle Diameter on Erosion Wear Performance of Radial
Flow Turbine DUAN Zhi—giang LI Xue-min(School of Energy and Power Engineering Huazhong Univer—
sity of Science and Technology Wuhan China Post Code: 430074) // Journal of Engineering for Thermal Energy &

Power. -2016 31(12).- 25 ~30

In order to investigate the influence of particle diameter on erosion performance of radial flow turbine delivering sol—
id—gas two-phase flow medium the impinging velocity impact angle and other parameters between solid particle and
the surface of flow—-passing parts were evaluated numerically. According to simulation results the particles with
small diameters were distributed relatively homogeneously in the flow path of volute and blade and almost had no
collision with the surface of flow—-passing parts so the erosion wear of flow-passing parts was relatively weak. By
contrary the solid particles with large diameters tended to pass into the flow pass of the impeller in the tail of the vo—
lute in the flow pass of the impeller and the particle was apt to move forward to the pressure surface and impacted
the pressure surface of the blade. With the increase of particle diameter the particle would impact the pressure sur—
face with a larger angle and velocity and there are multiple collisions with the pressure surface resulting exacerba—
ted erosion wear of the middle of the pressure surface near the shroud and the suction surface near the exit. Key

words :radial flow turbine erosive wear solid-gas two-phase flow motion trajectory numerical simulation

= Influences of Vortex Caused by the Mi—
cro-cylinder in the Blade Leading Edge on the Aerodynamic Performance of Low-pressure Axial Fan
CHEN Xiao+¥ei HUANG Dian-Gui (School of Energy and Power Engineering University of Shanghai for Sci—
ence and Technology Shanghai China Post Code: 200093) //Journal of Engineering for Thermal Energy & Power.

-2016 31(12).— 31 ~37

In order to improve the performance of axial fan this paper presented a flow control method by installing a micro—
cylinder in the leading edge of the axial fan blade and investigated the corresponding performance by using CFD.

The results show that the micro-eylinder can improve the fan performance within a certain range of operating condi—
tions. By comparing the flow field and the distribution of the boundary vorticity flux between the axial fans with and

without the micro-eylinder the improvement of the axial fan performance was analyzed. Key words:flow separation
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boundary vorticity flux blade leading edge micro-cylinder

= Effects of Hub Combined Boundary Layer Suction on the
Performance of a Ram-rotor HAN Ji-ang XUE Jia-qi ZHONG Jing§un GUAN Jian (Marine Engineer—
ing College Dalian Maritime University Dalian 116026 China)) // Journal of Engineering for Thermal Energy &
Power. -2016 31(12).- 38 ~47

In order to improve the flow structure of the ram—<otor passage and the aerodynamic performance of ram-rotor Fluent
software was used to simulate the overall performance and flow characteristics of the ram—otor and the influence of
suction flow rate on performance of ram—rotor was discussed. The results show that: three schemes of combined suc—
tion on hub can improve the flow field of ram-rotor and the efficiency or pressure ratio. In Case 2 the loading ca—
pacity of the ram-rotor is improved significantly and the pressure ratio increases by 5.2% . In Case 3 the boundary
layer separation of the ram—rotor passage is controlled effectively and the efficiency increases by 1. 1% almost with—
out changing pressure ratio. The influence of suction flow rate on performance of the ram—rotor is not evident. Key

words :ram—otor combined boundary layer suction performance numerical simulation

= Analysis and Comparison of Cogeneration Heating Schemes
ZHAO Chong LUO Xiangdong CHEN Ying SONG Meng-jie WANG Chao (School of Material and Energy Guang—
dong University of Technology Guangzhou Guangdong China Post Code: 510006) // Journal of Engineering for

Thermal Energy & Power. -2016 31(12).— 48 ~55

District heating is the current trend in the field of heating. In order to improve the energy efficiency of heating sys—
tem and reduce heating costs this paper put forward four kinds of nature gas district heating schemes based on the
different heating modes of existing power plant. The four cogeneration heating schemes were modeled and simulated
using Cycle-Tempo. The efficiencies of energy and exergy of each system were analyzed. The main factors influen—
cing the efficiencies of energy and exergy were discussed from the interior of each system. Then this paper estab—
lished the heating economic model for each scheme and analyzed the main factors affecting the economy. Finally

the influence of the nature gas price the power price the heating load and the heating distance on the cogeneration

heating systems were discussed. Key words: cogeneration heating simulation thermodynamic economic comparison

WEFGD — = Energy Saving of Gypsum Cyclone of Wet

Flue Gas Desulfurization in Power Plant by Central Solid Rod YANG Yang (School of Power Engi—



