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= Effect of Coal Ash on the Physicochemical Property of Iron-based Ox—
ygen Carrier ZHANG Shuai (ShenhuaGuohua (Beijing) Electric Power Research Institute Co. Ltd.
Beijing China Post Code: 100025) XIAO Rui(Key Laboratory of Energy Thermal Conversion and Control of Minis—
try of Education Southeast University Nanjing China Post Code: 210096) // Journal of Engineering for Thermal

Energy & Power. —2016 31(12).— 81 ~86

Abstract: The coal ashes derived from three typical Chinese coals (lignite bitumen and anthracite) were prepared
and used to investigate the interaction between coal ash and iron-based oxygen carrier in a thermogravmetric analy—
zer and the effect of coal ash on the reactivity recyclability and physical structure of iron-based oxygen carrier was
evaluated. The results showed that all three coal ashes could enhance the fuel gas conversion in the reduction peri—
od in which anthracite ash behaved the best with the highest fuel conversion achieved. Compared to the stable cy—
clic performance of iron-based oxygen carrier without coal ash presented the recyclability of iron-based oxygen car—
rier showed different degrees of degradation after three coal ashes were added. The reason could be ascribed to the
sintering on the surface of oxygen carrier particles which was mainly caused by the ash deposition on the iron-based
oxygen carrier. Of all the prepared coal ashes anthracite ash was showed to have the minimal impact on the physi—
cal structure of iron-based oxygen carrier. Key words: chemicaldooping combustion Chinese coal coal ash iron—

based oxygen carrier interaction

= Soft Sensing of Coal Consumption Rate based on Least Squares
Support Vector Machine DU Haiding (Shanxi University Taiyuan Shanxi China Post Code: 030000)

/1 Journal of Engineering for Thermal Energy & Power. —2016 31(12).— 87 — 91

To measure coal consumpti on rate accurately on the fly and improve the economy of boiler unit this article used the
method of least squares support vector machine (LSSVM) to build a soft measurement model for the coal consump—
tion rate of a sub-eritical boiler and it was validated by the unit operation data of one year long. The comparison
showed the maximum relative error of the soft measurement is 5.7% and it meets the industrial precision require—
ment. This paper also introduced a correction method for the on-ine measurement. The results showed that with the
ondine correction the maximum relative error becomes 2.2% further improving the accuracy of soft measurement

and it can be applied in the process of electric power generation. Key words :soft sensing least squares support vec—

tor machine coal consumption rate correction factor

= Emission Characteristics of PCDD/Fs from



