文章编号:1001-2060(2024)10-0124-08

计及直接空气碳捕集吸附 – 解吸特性的负碳综合 能源系统优化配置方法研究

蔺琪蒙1,章哲玮1,杨礼华2,吴 啸2

(1. 国能江苏新能源科技开发有限公司,江苏南京 210001;

2. 东南大学 大型发电装备安全运行与智能测控国家工程研究中心,江苏 南京 210096)

摘 要:为解决常规配置方法无法反映直接空气碳捕集(Direct air carbon capture, DAC)系统 CO₂吸附 - 解吸两阶段 运行特性差异的问题, 构建了可反映吸附 - 解吸两阶段 CO₂传质及能耗特征差异的 DAC 系统模型, 进而提出考虑 投资成本、可再生能源利用和碳减排的 DAC 综合能源系统配置优化方法, 获得了各设备的最佳容量及典型场景下 DAC 系统灵活吸附、解吸和停机的运行策略。案例分析验证了所提方法的有效性与优越性, 相比于常规配置方法, 本文所提配置方法能够实现区域碳中和目标, 并使年总成本降低 8.70%。

关键 词:直接空气碳捕集;综合能源系统;优化配置;灵活运行

中图分类号:TK01 文献标识码:A DOI:10.16146/j. cnki. mdlgc. 2024. 10.014

[引用本文格式] 蔺琪蒙,章哲玮,杨礼华,等. 计及直接空气碳捕集吸附 – 解吸特性的负碳综合能源系统优化配置方法研究[J]. 热能动力工程,2024,39(10):124 – 131. LIN Qimeng, ZHANG Zhewei, YANG Lihua, et al. Optimal configuration approach of carbon-negative integrated energy system considering adsorption and desorption characteristics of direct air carbon capture[J]. Journal of Engineering for Thermal Energy and Power,2024,39(10):124 – 131.

Optimal Configuration Approach of Carbon-negative Integrated Energy System Considering Adsorption and Desorption Characteristics of Direct Air Carbon Capture

LIN Qimeng¹, ZHANG Zhewei¹, YANG Lihua², WU Xiao²

(1. Guoneng Jiangsu New Energy Technology Development Co., Ltd., Nanjing, China, Post Code: 210001;

2. National Engineering Research Center of Power Generation Control and Safety, Southeast University,

Nanjing, China, Post Code: 210096)

Abstract: To address the issue that the conventional configuration approach cannot reflect the differences in two-stage operation characteristics of CO_2 adsorption and desorption in direct air carbon capture (DAC) system, this paper constructed a DAC system model that can reflect the differences in CO_2 mass transfer and energy consumption characteristics between adsorption and desorption stages. Then, a configuration optimization approach considering investment, renewable energy utilization and carbon reduction was proposed for DAC integrated energy system (IES). The optimal capacity of each equipment and the operating strategies for flexible adsorption, desorption and shutdown of the DAC system in typical sce-

收稿日期:2023-11-30; 修订日期:2024-01-24

基金项目:国家重点研发计划项目(2021YFE0112800);国家自然科学基金(52376002);中央高校基本科研业务费专项资金(2242023K5001, 2242023K30011)

Fund-supported Project: National Key R&D Program of China (2021YFE0112800); National Natural Science Foundation of China (52376002); Fundamental Research Funds for the Central Universities (2242023K5001, 2242023K30011)

作者简介: 蔺琪蒙(1985 -), 男, 国能江苏新能源科技开发有限公司工程师.

通信作者:吴啸(1986-),男,东南大学副教授.

narios were obtained. Case studies validate the effectiveness and superiority of the proposed configuration approach, compared with the conventional configuration approach, the configuration approach proposed in this paper achieves regional carbon neutrality goals and reduces annual total costs by 8.70%. **Key words:** direct air carbon capture (DAC), integrated energy system (IES), optimal configuration, flexible operation

 H_t^{ASHP} —t 时刻的制热功率,kW;

符号说明

$Q_{CO_2}^{\text{DAC}}$ — t 时刻吸附剂中的 CO ₂ 负载量, mol;	COP_{ASHP} 一空气源热泵的制热系数;		
$u^{\text{DAC}}_{\text{ads}}$, —0/1 逻辑变量, 表征 DAC 吸附状态;	P_{ι}^{ASHP} 一空气源热泵的耗电功率,kW;		
u_{dec}^{MAL} , $-0/1$ 逻辑变量,表征 DAC 解吸状态;	C_{ι}^{EC} — t 时刻的制冷功率,kW;		
$u_{\text{trace}}^{\text{DAC}}$,—0/1 逻辑变量,表征 DAC 停机状态;	COP_{EC} 一电制冷机的制冷系数;		
$v_{i}^{\text{DAC}} - t$ 时刻状态 <i>i</i> 的启动动作:	P_t^{EC} —电制冷机的耗电功率,kW;		
z^{DAC}_{i} —t 时刻状态 i 的停止动作:	$RC_t^{Battery}$ — t 时刻蓄电池内的储电量, kW・h;		
Ads ^{DAC} 。——吸附剂的最大 CO ₂ 吸附量 mol·	δ_{Battery} 一蓄电池的衰减系数,%;		
Ade^{DAC} — t 时刻的CO 吸附量 mol.	$\eta_{c}^{Battery}$ —蓄电池充电效率;		
$Dec^{DAC} - t Highly CO_2 KM \pm mol.$	$\eta_{\mathrm{d}}^{\mathrm{Battery}}$ 一放电效率;		
Bes, 一, 可刻时, CO ₂ 研究重, mor;	$u_{c,t}^{\text{Battery}}$ —0/1 逻辑变量,表征 t 时刻蓄电池充电状态;		
m _{ads} — 吸附剂内发量, kg,	$u_{d,t}^{\text{Battery}}$ —0/1 逻辑变量,表征 t 时刻蓄电池放电状态;		
$q_{CO_2,t}$ (CO_PUBETROWE mole	$P_{\mathrm{e},t}^{\mathrm{Battery}}$ —t 时刻蓄电池充电功率,kW;		
$p_{\text{eq}}(c_{0_2,\text{ads}} = c_{0_2} + \beta_{\text{ads}}(c_{0_2,\text{ads}}) = 1, \text{more } p_{\text{ads}}(c_{0_2,\text{ads}}) = 0, \text{ ads} = $	$P_{d,t}^{\text{Battery}}$ —t时刻蓄电池放电功率,kW;		
$p_{t,ads} = t$ 时刻如的时候电力车, \mathbf{x} w;	RC_t^{HST} —t 时刻储热罐内的储热量,kW・h;		
$\Gamma_{t,des} = t$ 时刻胜奴时权电刃车,KW;	δ_{HST} —储热罐的衰减系数,%;		
$\Pi_{t,des}$ t 时刻胜吸则权然为平,KW;	$\eta_{ m e}^{ m HST}$ —储热罐充热效率;		
$\sigma_{P,ads}$ 一吸附甲位质重 CO ₂ 电耗, kW/kg;	$\eta_{ m d}^{ m HST}$ —储热罐放热效率;		
$\boldsymbol{\sigma}_{P,des}^{\text{ches}}$ 一 解败单位质量 CO_2 电耗, kW/kg;	u ^{HST} —0/1 逻辑变量,表征储热罐充电状态;		
$\boldsymbol{\sigma}_{H,\mathrm{des}}^{\mathrm{bac}}$ 一解吸单位质量 CO ₂ 热耗,kW/kg;	u ^{HST} —0/1 逻辑变量,表征储热罐放电状态;		
P ^{PV} _{rate} —光伏阵列的额定功率,kW;	$H^{\rm HST}_{e,t}$ —储热罐充热功率,kW;		
$f_{\rm PV}$ 一光伏降额系数;	H ^{HST} 一储热罐放热功率,kW;		
G_t^{PV} —t 时刻的太阳辐射强度,kW/m ² ;	f_{inv} —设备投资成本系数;		
α _{PV} 一功率温度系数,%/℃;	f ^{DAC} ,—DAC 年化投资成本系数;		
G_{STC}^{PV} 一标准测试条件下的太阳辐射强度, kW/m^2 ;	<i>C</i> ap—设备容量;		
$T_{\text{STC}}^{\text{PV}}$ 一标准测试条件下的光伏温度, $℃$;	CR—设备投资回报率;		
T_{ι}^{PV} — ι 时刻光伏阵列板温度, \mathbb{C} ;	L—设备服役年限,a;		
T_t^{ac} — t 时刻环境温度, ℃;	f_{om} 一设备运行维护成本系数;		
$\beta_{\rm PV}$ 一温度系数;	OM _{re} —单位时间内可再生供能的运维成本,\$/h;		
P_{ι}^{WT} — t 时刻风力涡轮机的输出电功率,kW;	OM _{conv} —单位时间内能源转换设备的运维成本,\$/h;		
$P_{\text{rate}}^{\text{WT}}$ —风力涡轮机的额定电功率,kW;	OM _{sto} —单位时间内储能设备的运维成本,\$/h;		
a_i, b_i, c_i —风力涡轮机特性曲线的拟合参数, $i = 1, 2, 3;$	f ^{RES} —可再生能源削减惩罚系数、 \$ /(kW・h);		
v _{ci} —风力涡轮机的切入速度,m/s;	P^{cut} — t 时刻可再生能源削减功率,kW:		
v _r —额定风速,m/s;	$P_{1,,H_{1,,I}}$, $C_{1,,-}$ 用户在 t 时刻的电、热、冷负荷.kW:		
v _{co} —切出风速,m/s;	Probac — DAC 系统的年碳捕集量.kg/a。		
v_t^{hub} —风力涡轮机轮毂高度处的风速,m/s;			
v_t^{anem} —风速仪高度处的风速,m/s;	리 속		
h _{hub} —风力涡轮机轮毂高度,m;	ゴー市		
h — 风速仪高度 m·			

sr-地面粗糙度;

直接空气碳捕集(Direct Air Carbon Capture,

DAC) 技术是一项负碳排技术^[1]。现有的 DAC 技术 主要有物理吸附、化学吸收和化学吸附法。相比于 物理吸附法选择性不佳、化学吸收法高能耗的特点, 基于化学吸附法的 DAC 系统具有良好的 CO₂选择 性以及较低的能耗,具有广阔的应用前景^[2]。

已有学者从成本预测^[3]和全生命周期碳排放 分析^[4]的角度指出,将化学吸附法 DAC 技术与可再 生综合能源系统(Integrated Energy System, IES)结 合,是实现负碳排放最有前景的方式。

考虑到可再生能源的间歇波动特征,优化综合 能源系统中各设备的容量,并将 DAC 系统的吸附、 解吸过程与系统中其他设备的运行灵活协同是实现 系统经济、稳定运行的前提。为此,Vézina 等人^[5]探 讨了离网地区可再生能源、DAC 系统、柴油机和储 能的最佳容量配置以及碳减排性能,结果表明,与纯 柴油供能相比,耦合可再生能源与 DAC 可以减少该 区域 95% 的碳排放;Qiu 等人^[6]构建了绿色农业零 碳供能系统,在满足农业用户用能需求并平衡农业 活动碳排放的前提下,通过优化整体系统的投资成 本、运维成本以及环境效益,确定设备的容量与典型 场景下的运行策略。

然而,现有的配置优化研究中假设 CO₂捕集瞬间完成,忽视 DAC 系统实际运行过程中缓慢的 CO₂ 吸附、解吸过程以及两阶段能耗特征差异,导致非最优甚至不可行的配置结果。

为此,本文构建了面向配置的 DAC 两阶段吸附 - 解吸模型,提出考虑投资、运行维护、可再生能源 利用率、碳减排性能的配置方法,以优化 DAC 系统 容量和典型场景下灵活吸附、解吸、停机运行策略, 揭示 DAC 系统与其他设备的协同运行机制。以某 热带岛屿负碳能源系统的配置案例验证了所提方法 的有效性以及相比于常规配置方法的优越性。

1 负碳综合能源系统模型

负碳综合能源系统通过全可再生能源供能,实 现能源侧的零碳排放,并应用直接空气碳捕集这一 项负碳排技术,实现特定区域的碳中和目标。负碳 综合能源系统模型如图1所示。该系统离网运行, 通过风力涡轮机、光伏阵列、空气源热泵、电制冷机、 蓄电池和储热罐完成能源生产、转换以及存储。

图 1 负碳综合能源系统模型

采用 YALMIP 工具包在 MATLAB 平台构建本 文提出的配置优化模型,并采用商业求解器 Gurobi 求解。

1.1 直接空气碳捕集系统模型

考虑基于低温固体化学吸附剂以及变温真空工 艺的 DAC 系统模型^[7]如图 2 所示。

Fig. 2 Operation model of DAC system

吸附阶段,空气受电力驱动,通过空气接触器, 低浓度 CO₂逐渐富集于空气接触器内部的吸附剂 中;在解吸阶段,通过电、热驱动,改变吸附剂及其所 处环境的压力和温度来解吸 CO₂。两阶段 CO₂吸附 – 解吸过程均呈现缓慢的动力学特征^[8],动力学模型 如式(1)所示:

$$\begin{cases} Q_{\text{CO}_{2,t}}^{\text{DAC}} = Q_{\text{CO}_{2,t-1}}^{\text{DAC}} + u_{\text{ads},t}^{\text{DAC}} \text{Ads}_{t}^{\text{DAC}} - u_{\text{des},t}^{\text{DAC}} \text{Des}_{t}^{\text{DAC}} \\ \\ Q_{\text{CO}_{2,t}}^{\text{DAC}} = m_{\text{ads}} q_{\text{CO}_{2,t}} \\ \text{Ads}_{\text{eq},\text{CO}_{2}}^{\text{DAC}} = m_{\text{ads}} q_{\text{eq},\text{CO}_{2,\text{ads}}} \end{cases} (1)$$

根据式(1), DAC 系统的年碳捕集量 Pro^{DAC}_{CO2,a} 可 按式(2) 计算:

$$Pro_{CO_{2},a}^{DAC} = \frac{M_{CO_{2}}D_{a}\sum_{t=1}^{N}u_{des,t}^{DAC}Des_{t}^{DAC}}{1\ 000}$$
(2)

式中:*M*_{CO2} = 0.044 kg/mol—CO2 摩尔质量;*D*_{year}— DAC 系统年运行天数,取值 365;本文以 15 min 为 配置优化时间间隔,因此N=96。

DAC 系统的日
$$CO_2$$
产率 Ψ_{DAC} 可按式(3) 计算:

$$\Psi_{\text{DAC}} = \sum_{t=1}^{N} u_{\text{des},t}^{\text{DAC}} \frac{\text{Des}_{t}^{\text{DAC}}}{m_{\text{ads}}}$$
(3)

DAC系统两阶段能耗模型如式(4)所示:

$$\begin{cases} P_{t,\text{ads}}^{\text{DAC}} = u_{\text{ads},t}^{\text{DAC}} \boldsymbol{\sigma} \boldsymbol{\sigma}_{P,\text{ads}}^{\text{DAC}} \text{Ads}_{t}^{\text{CO}_{2}} M_{\text{CO}_{2}} / \Delta t \\ P_{t,\text{des}}^{\text{DAC}} = u_{\text{des},t}^{\text{DAC}} \boldsymbol{\sigma} \boldsymbol{\sigma}_{P,\text{des}}^{\text{DAC}} \text{Des}_{t}^{\text{CO}_{2}} M_{\text{CO}_{2}} / \Delta t \\ H_{t,\text{des}}^{\text{DAC}} = u_{\text{des},t}^{\text{DAC}} \boldsymbol{\sigma} \boldsymbol{\sigma}_{H,\text{des}}^{\text{DAC}} \text{Des}_{t}^{\text{CO}_{2}} M_{\text{CO}_{2}} / \Delta t \end{cases}$$
(4)

式中: $\sigma P_{P,ads}^{DAC} = 0.010 \text{ kW/kg}; \sigma P_{P,des}^{DAC} = 0.022 \text{ kW/kg};$ $\sigma P_{H,des}^{DAC} = 0.212 \text{ kW/kg}^{[9]}$ 。

1.2 其他设备

风力涡轮机发电模型^[10]如式(5)所示:

$$P_{t}^{WT} = \begin{cases} 0, & v_{t}^{hub} < v_{ci} \\ v_{t}^{hub} > v_{co} \\ \\ P_{t}^{WT} = \begin{cases} 0, & v_{t}^{hub} > v_{co} \\ \\ P_{t}^{WT} > v_{t}^{hub} > v_{co} \\ \\ P_{rate}^{WT} + a_{2}e^{-\left(\frac{v_{t}^{hub} - b_{2}}{c_{2}}\right)^{2}} \\ + a_{2}e^{-\left(\frac{v_{t}^{hub} - b_{3}}{c_{3}}\right)^{2}} \\ \\ + a_{3}e^{-\left(\frac{v_{t}^{hub} - b_{3}}{c_{3}}\right)^{2}} \end{bmatrix}, v_{ci} \leq v_{t}^{hub} \leq v_{r} \\ P_{rate}^{WT}, & v_{r} \leq v_{t}^{hub} \leq v_{co} \end{cases}$$
(5)

其中, $v_t^{\text{hub}} = v_t^{\text{anem}} \frac{\ln h_{\text{hub}} - \ln sr}{\ln h_{\text{anem}} - \ln sr}$ 。

光伏阵列发电模型^[11]如式(6)所示:

$$\begin{cases} P_{t}^{PV} = P_{rate}^{PV} f_{PV} \frac{G_{t}^{PV}}{G_{STC}^{PV}} [1 + \alpha_{PV} (T_{t}^{PV} - T_{STC}^{PV})] \\ T_{t}^{PV} = T_{t}^{ac} + \beta_{PV} G_{t}^{PV} \end{cases}$$
(6)

空气源热泵制热模型^[12]如式(7)所示:

$$H_{\iota}^{\text{ASHP}} = \text{COP}_{\text{ASHP}} \times P_{\iota}^{\text{ASHP}}$$
(7)

电制冷机的制冷模型^[12]如式(8)所示:

$$C_{\iota}^{\text{EC}} = \text{COP}_{\text{EC}} \times P_{\iota}^{\text{EC}}$$
(8)

$$\mathrm{RC}_{\iota}^{\mathrm{Battery}} = (1 - \delta_{\mathrm{Battery}}) \mathrm{RC}_{\iota-1}^{\mathrm{Battery}} + \eta_{\mathrm{c}}^{\mathrm{Battery}} u_{\mathrm{c},\iota}^{\mathrm{Battery}}$$

$$P_{\mathrm{c},t}^{\mathrm{Battery}} \times \frac{\Delta t}{3\ 600} - \frac{1}{\eta_{\mathrm{d}}^{\mathrm{Battery}}} u_{\mathrm{d},t}^{\mathrm{Battery}} P_{\mathrm{d},t}^{\mathrm{Battery}} \times \frac{\Delta t}{3\ 600} \tag{9}$$

储热罐模型^[13]如式(10)所示:

$$\mathrm{RC}_{t}^{\mathrm{HST}} = (1 - \delta_{\mathrm{HST}}) \,\mathrm{RC}_{t-1}^{\mathrm{HST}} + \eta_{c}^{\mathrm{HST}} u_{c,t}^{\mathrm{HST}} H_{c,t}^{\mathrm{HST}} \times \frac{\Delta t}{3\ 600} - \frac{1}{\eta_{d}^{\mathrm{HST}}} \, u_{d,t}^{\mathrm{HST}} H_{d,t}^{\mathrm{HST}} \times \frac{\Delta t}{3\ 600}$$
(10)

2 负碳综合能源系统配置优化方法

2.1 目标函数

负碳综合能源系统优化配置目标为最小化的年 总成本 *M*_{total},如式(11)所示:

min
$$M_{\text{total}} = M_{\text{inv}} + M_{\text{om}} + M_{\text{cut}} - M_{\text{environ}}$$
 (11)
年化投资成本 M_{inv} 计算式如式(12)所示:

$$M_{\rm inv} = \text{CR} \times \begin{pmatrix} f_{\rm inv}^{\rm PV} P_{\rm rate}^{\rm PV} + f_{\rm inv}^{\rm WT} P_{\rm rate}^{\rm WT} + f_{\rm inv}^{\rm Battery} \\ C a p_{\rm Battery} + f_{\rm inv}^{\rm HST} C a p_{\rm HST} \\ + f_{\rm inv}^{\rm ASHP} C a p_{\rm ASHP} + f_{\rm inv}^{\rm EC} C a p_{\rm EC} \end{pmatrix} + f_{\rm inv,al}^{\rm DAC} C a p_{\rm DAC}$$

$$Cap_{\text{DAC}} = \text{Pro}_{\text{CO}_2,a,\text{max}}^{\text{DAC}} = m_{\text{ads}} \Psi_{\text{DAC}}^{\text{max}} M_{\text{CO}_2} D_{\text{year}}$$
(12)

式中:CR = 10.77% — 投资回报率^[12]; DAC 容量等 于年最大 CO₂捕集量 Pro^{DAC}_{CO2}, kg/a; Ψ_{DAC}^{max} — DAC 系统 最大 CO₂日产率,在给定的内部运行条件与运行约束 下为常数,本文单位吸附剂—天内捕捉的 CO₂ 摩尔数 量 Ψ_{DAC}^{max} = 8.9 mol·kg⁻¹·day⁻¹。

设备运行维护成本 Mom 如式(13) 所示:

$$\begin{cases} M_{\rm om} = D_a \frac{\Delta t}{3\,600} \sum_{t=1}^{N} \left(OM_{\rm re} + OM_{\rm conv} + OM_{\rm sto} \right) + f_{\rm om}^{\rm DAC} Pro_{CO_2,a}^{\rm DAC} \\ OM_{\rm re} = f_{\rm om}^{\rm PV} P_t^{\rm PV} + f_{\rm om}^{\rm WT} P_t^{\rm WT} \\ OM_{\rm conv} = f_{\rm om}^{\rm EC} C_t^{\rm EC} + f_{\rm om}^{\rm ASHP} H_t^{\rm ASHP} \\ OM_{\rm sto} = f_{\rm om}^{\rm Battery} \left(P_{c,t}^{\rm Battery} + P_{d,t}^{\rm Battery} \right) + f_{\rm om}^{\rm HST} \left(H_{c,t}^{\rm HST} + H_{d,t}^{\rm HST} \right) \end{cases}$$
(13)

可再生能源削减惩罚 M_{cut}如式(14) 所示:

$$M_{\rm cut} = D_{\rm year} f_{\rm cut} \frac{\Delta t}{3\ 600} \sum_{t=1}^{N} P_t^{\rm cut}$$
(14)

DAC系统创造负碳排时,所带来的环境效益 *M*_{environ}计算式如式(15)所示:

 $M_{environ} = Trade_{CO_2}(Pro_{CO_2,a}^{DAC} - CE_a)$ (15) 式中:Trade_{CO_2} = 0.025 \$/kg—碳交易价格;CE_a—不 能通过部署可再生能源而避免的碳排放,可根据区 域原化石燃料消耗的碳排放进行折算,kg/a。

2.2 约束条件

冷、热、电功率平衡约束如式(16)所示:

$$\begin{cases} P_{t}^{\text{PV}} + P_{t}^{\text{WT}} + u_{d,t}^{\text{battery}} P_{d,t}^{\text{battery}} = u_{c,t}^{\text{battery}} P_{c,t}^{\text{battery}} + P_{t}^{\text{ASHP}} + \\ P_{t}^{\text{cut}} + P_{t}^{\text{EC}} + P_{t}^{\text{load}} + P_{t,\text{ads}}^{\text{DAC}} + P_{t,\text{des}}^{\text{DAC}} \\ H_{t}^{\text{ASHP}} + u_{d,t}^{\text{HST}} H_{d,t}^{\text{HST}} = u_{c,t}^{\text{HST}} H_{c,t}^{\text{HST}} + H_{t,\text{des}}^{\text{DAC}} + H_{t}^{\text{load}} \\ C_{t}^{\text{EC}} = C_{t}^{\text{load}} \end{cases}$$
(16)

$$u_{\text{ads},t}^{\text{DAC}} + u_{\text{des},t}^{\text{DAC}} + u_{\text{stop},t}^{\text{DAC}} = 1$$
(17)

$$u_{i,t}^{\text{DAC}} - u_{i,t-1}^{\text{DAC}} = y_{i,t}^{\text{DAC}} - z_{i,t}^{\text{DAC}}$$
(18)

$$y_{i,t}^{\text{DAC}} + z_{i,t}^{\text{DAC}} \le 1 \tag{19}$$

为了避免 DAC 系统吸附、解吸状态的频繁切换,对吸附与解吸分别设置如式(20)~式(21)所示的最短运行时间约束.

$$\sum_{k=t-\text{Time}_{\text{ads},\min}+1}^{t} y_{\text{ads},k}^{\text{DAC}} \leq u_{\text{ads},t}^{\text{DAC}}$$
(20)

$$\sum_{k=t-\text{Time}_{\text{des},\min}+1}^{t} y_{\text{des},k}^{\text{DAC}} \leq u_{\text{des},t}^{\text{DAC}}$$
(21)

DAC系统的重复性约束如式(22)所示:

$$Q_{\mathrm{CO}_{2},0}^{\mathrm{DAC}} = Q_{\mathrm{CO}_{2},N}^{\mathrm{DAC}}$$
(22)

各时刻 DAC 系统的吸附量、解吸量的速率约束 如式(23)所示:

$$\begin{cases} 0 \leq u_{\text{ads},t}^{\text{DAC}} \text{Ads}_{t}^{\text{CO}_{2}} \leq 0.15 \times \text{Ads}_{\text{eq,CO}_{2}}^{\text{DAC}} \\ 0 \leq u_{\text{des},t}^{\text{DAC}} \text{Des}_{t}^{\text{DAC}} \leq 0.2 \times \text{Ads}_{\text{eq,CO}_{2}}^{\text{DAC}} \end{cases}$$
(23)

DAC 系统的 CO2负载量约束如式(24) 所示:

$$0 \leq Q_{\text{CO}_{2,t}}^{\text{DAC}} \leq \text{Ads}_{\text{eq},\text{CO}_{2}}^{\text{DAC}}$$
(24)

蓄电池运行约束如式(25)所示:

$$\begin{cases} 0. \ 1Cap_{Battery} \leq RC_{t}^{Battery} \leq 0. \ 9Cap_{Battery} \\ 0 \leq P_{c,t}^{Battery} \leq 0. \ 25Cap_{Battery} \\ 0 \leq P_{d,t}^{Battery} \leq 0. \ 35Cap_{Battery} \\ u_{c,t}^{Battery} + u_{d,t}^{Battery} \leq 1 \\ RC_{0}^{Battery} = RC_{N}^{Battery} \end{cases}$$
(25)

储热罐运行约束如式(26)所示:

$$\begin{cases} 0. \ 1Cap_{\rm HST} \leq {\rm RC}_{\iota}^{\rm HST} \leq 0. \ 9Cap_{\rm HST} \\ 0 \leq H_{c,\iota}^{\rm HST} \leq 0. \ 4Cap_{\rm HST} \\ 0 \leq H_{d,\iota}^{\rm HST} \leq 0. \ 4Cap_{\rm HST} \\ u_{c,\iota}^{\rm HST} + u_{d,\iota}^{\rm HST} \leq 1 \\ {\rm RC}_{0}^{\rm HST} = {\rm RC}_{N}^{\rm HST} \end{cases}$$
(26)

空气源热泵、电制冷机运行约束分别如式(27)~式(28)所示:

$$0 \le H_t^{\text{ASHP}} \le Cap_{\text{ASHP}} \tag{27}$$

)

$$0 \leqslant C_t^{\rm EC} \leqslant Cap_{\rm EC} \tag{28}$$

通过使用 DAC,应实现区域净零或负碳排目标,碳捕集约束如式(29)所示:

$$\operatorname{Pro}_{\operatorname{CO}_{2,a}}^{\operatorname{DAC}} \ge \operatorname{CE}_{a} \tag{29}$$

3 负碳综合能源系统配置案例分析

3.1 场景选取与参数设置

选取菲律宾离网居住型岛屿作为分析案例,典型日下的气象数据如图3所示^[14]。

Fig. 3 Meteorological data of the considered region in a typical day

用户负荷如图 4 所示^[15]。为实现区域碳中和, 理想的碳捕集目标为 209.53 t/a^[16]。该碳捕集目 标为公式(15)中的 CE,其可根据用户负荷总量进 行折算。仿真所采用的经济性参数如表 1 所示。

图4 典型日下用户电、热、冷负荷需求

Fig. 4 Electricity, heat and cold load demand of

users in a typical day

表1 经济性参数

Tab. 1 Economic parameters

设备	投资成本系数	运维成本系数
光伏阵列 ^[17] / \$· kW ⁻¹	888	0.001 38
风力涡轮机 ^[17] / \$· kW ⁻¹	502	0.004 25
蓄电池 ^[13] / \$ •(kW•h) ⁻¹	1 075	0.003
储热罐 ^[13] / \$ •(kW•h) ⁻¹	25	0.000 3
空气源热泵 ^[12] / \$ •(kW•h) ⁻¹	233	0.001 6
电制冷机 ^[12] / \$ •(kW•h) ⁻¹	150	0.001 5
直接空气碳捕集 ^[18] / \$· kg ⁻¹	0.070	0.003 5

3.2 案例分析

表 2 和表 3 为采用本文所提配置方法得到的各 设备容量与系统成本。如表 2 所示,为实现区域净 零碳排放与用户的稳定供能,需要配置容量为 272.61 t/a 的 DAC 系统,并支出 65.59 × 10³ \$。由 于 DAC 的高成本,所捕集的 CO₂恰好实现碳中和, 环境效益为零。

表2 设备容量

Tab. 2 Device capacity

设备	容量
光伏阵列/kW	67.90
风力涡轮机/kW	141.23
蓄电池/kW・h	58.16
储热罐/kW・h	816.01
空气源热泵/kW	349.55
电制冷机/kW	175.20
直接空气碳捕集/t・a ⁻¹	272.61

表 3 负碳综合能源系统成本(10³ \$)

Tab. 3 Carbon-negative integrated energy system costs (10^3 \$)

参 数	数值
年初始化投资成本 M _{inv}	53.75
年运行维护成本 M _{om}	9.44
可再生能源惩罚 M _{eut}	0.13
负碳排环境收益 M _{environ}	0
年总成本 M _{total}	63.32

图 5 为典型日下功率平衡图。如图 5 所示,直 接空气碳捕集系统与用户的负荷需求可以通过能源 供应、转换和存储设备之间的协调运行来满足。

图 5 典型日下功率平衡示意图

Fig. 5 Schematic diagrams of power balance in a typical day

图 6、图 7 分别为典型日下储能设备以及 DAC 系统的运行策略。

Fig. 6 Operating strategies of energy storage device

Fig. 7 Operating strategy of DAC system

如图 6 与图 7 所示, DAC 系统的吸附、解吸和 停机状态取决于间歇波动的可再生能源与用户负 荷、储能设备状态以及内部 CO₂负载量。在0:00~ 6:30 期间,用户负荷低而可再生能源充足,为减少 弃电 DAC 系统在该时段内的总吸附时间长于总解 吸时间;在 6:30~9:45 期间,可再生能源不足而用 户负荷增加,蓄电池、储热罐无法满足 DAC 系统吸 附或解吸的能耗需求,此时 DAC 系统处于停机状 态;在9:45~18:15 期间,可再生能源充足而用户负 荷需求高, DAC 系统无需较长的吸附时间以消耗富 余可再生能源,该时段内的吸附时间与解吸时间相 近;在 18:15~21:30 期间,用户负荷处于峰值而可 再生能源较为不足, 储热罐的储热量无法满足解吸 需求,此时该时段内 DAC 系统的吸附时间较长。

3.3 配置方法对比

为验证本文配置方法的优越性,将常规配置方法与本文所提配置方法进行对比:(1)常规配置方法进行对比:(1)常规配置方法^[5-6]未考虑 DAC 缓慢的 CO₂吸附、解吸过程并忽视 DAC 两阶段能耗特性差异;(2)本文所提方法综合考虑 DAC 系统的两阶段 CO₂吸附 – 解吸过程以及相应能耗特性,并针对 DAC 缓慢的吸附 – 解吸过程以程设置 CO₂吸附、解吸速率约束。

表4对比了常规配置方法与本文所提配置方法 所得的各设备容量。结果表明,由于忽视 CO₂吸附 – 解吸两阶段运行过程,常规配置方法中 DAC 系统的 CO₂日产率可达 11.86 mol/kg,偏离 DAC 系统的运 行实际,导致其配置结果中 DAC 系统的吸附剂质量 低于所提配置方法。

表4 不同配置方法下的容量对比

Tab. 4 Capacity comparison by different

configuration methods

设备	本文方法	常规配置方法
光伏发电板/kW	67.90	67.24
风力涡轮机/kW	141.23	141.18
蓄电池/kW・h	58.16	58.41
储热罐/kW・h	816.01	854.61
空气源热泵/kW	349.55	339.55
电制冷机/kW	175.20	175.20
直接空气碳捕集吸附剂质量/kg	1 900.95	824.79

表 5 对比了两种方法所得设备容量下综合能源 系统的主要运行指标,调度中考虑 DAC 两阶段特 性。如表 5 所示,常规配置方法为 DAC 系统配置了 较少的吸附剂质量, DAC 系统的年 CO₂捕集量为 93.38 t,相比于本文所提配置方法,常规配置方法 的 CO₂捕集量减少 55.43%,无法实现碳中和,反而 导致 2.90×10³\$的碳排放惩罚。同时,受 DAC 容 量限制, DAC 运行功率难以较好地匹配可再生能 源,可再生能源削减惩罚增加。因此,常规配置方法 使系统年总成本增加 9.52%。相比于常规配置方 法,本文所提方法能够有效地实现碳中和目标,并降 低 8.70% 的系统年总成本。

表 5 常规配置方法与本文配置方法下 综合能源系统主要指标对比

Tab. 5 Comparison of key indicators of IES by conventional configuration method and the configuration method proposed in this paper

参数	本文方法	常规配置方法
年 CO ₂ 捕集量/t・a ⁻¹	209.53	93.38
净零碳排放目标	是	否
可再生能源削减惩罚/10 ³ \$	0	16.09
负碳排收益/10 ³ \$	0	-2.90
年总成本/10 ³ \$	63.32	69.35

4 结 论

建立了反映两阶段 CO₂吸附 – 解吸过程及其能 耗差异的直接空气碳捕集模型,进而提出综合考虑 投资、运行维护、可再生能源利用、碳减排的负碳综合能源系统的配置策略,优化了综合能源系统中各设备的容量及典型场景下的运行策略,揭示了直接 空气碳捕集系统与综合能源系统内其他设备的协同 运行机制,结果表明:

(1)为实现区域稳定能源供应以及零碳转型需
 要花费 63.32×10³\$,直接空气碳捕集成本占比
 31.29%。

(2)忽视两阶段 CO₂吸附、解吸特性无法实现 净零碳排放目标。常规配置方法下 DAC 系统所捕 集的 CO₂质量相比于本文所提考虑两阶段 CO₂吸附 - 解吸特性的配置方法减少 55.43%,系统年总成 本上升 9.52%。所提配置方法能够有效实现碳中 和目标,相较于常规配置方法降低 8.70% 的系统年 总成本。

本文所采用的能源转换设备均采用简化的线性 模型以保证配置优化可行性与计算效率。然而,线 性模型无法表征变工况下各设备的运行特性波动。 构建具有较好精度又便于优化求解的设备配置模 型,提升配置优化精度将是未来研究工作的重点。

参考文献:

- [1] ERANS M, SANZPÉREZ E S, HANAK D P, et al. Direct air capture: Process technology, techno-economic and socio-political challenges [J]. Energy & Environmental Science, 2022, 15 (4): 1360 - 1405.
- [2] ZHU Xuancan, XIE Wenwen, WU Junye, et al. Recent advances in direct air capture by adsorption [J]. Chemical Society Reviews, 2022,51(15):6574-6651.
- [3] FASIHI M, EFIMOVA O, BREYER C. Techno-economic assessment of CO₂ direct air capture plants [J]. Journal of Cleaner Production, 2019, 224:957 – 980.
- [4] TERLOUW T, TREYER K, BAUER C, et al. Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources[J]. Environmental Science & Technology, 2021, 55(16): 11397-11411.
- [5] VÉZINA G, BROUILLETTE M. Assessment of an integrated direct CO₂ air capture system using wind power with compressed air energy storage in northern regions[C]//Abu Dhabi, UAE:15th Greenhouse Gas Control Technologies Conference, 2021.
- [6] QIU Jie, YANG Lihua, CHEN Xianhao, et al. Optimal configuration of a negative carbon emission energy system for green agriculture
 [J]. IFAC-PapersOnLine, 2022, 55(9):501 - 506.

- [7] AZARABADI H, LACKNER K S. A sorbent-focused techno-economic analysis of direct air capture [J]. Applied Energy, 2019, 250:959-975.
- [8] WURZBACHER J A, GEBALD C, STEINFELD A. Separation of CO₂ from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel[J]. Energy & Environmental Science, 2011,4(9):3584.
- [9] ZHU Xuancan, GE Tianshu, YANG Fan, et al. Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO₂ capture from ambient air[J]. Renewable and Sustainable Energy Reviews, 2021, 137:110651.
- [10] PANG Yi, PAN Lei, ZHANG Jingmei, et al. Integrated sizing and scheduling of an off-grid integrated energy system for an isolated renewable energy hydrogen refueling station [J]. Applied Energy, 2022,323:119573.
- [11] ZHOU Jianli, WU Yunna, ZHONG Zhiming, et al. Modeling and configuration optimization of the natural gas-wind-photovoltaic-hydrogen integrated energy system: A novel deviation satisfaction strategy [J]. Energy Conversion and Management, 2021, 243:114340.
- [12] LI Yuxuan, ZHANG Junli, WU Xiao, et al. Optimal design of combined cooling, heating and power multi-energy system based on load tracking performance evaluation of adjustable equipment [J]. Applied Thermal Engineering, 2022, 211:118423.
- [13] 杨 凯. 含能量存储的综合能源系统调度优化方法研究
 [D].北京:华北电力大学,2020.
 YANG Kai. Research on optimal scheduling approach of integrated energy system with energy storage [D]. Beijing: North China Electric Power University,2020.
- [14] MORATO M M, VERGARA-DIETRICH J, ESPARCIA E A, et al. Assessing demand compliance and reliability in the Philippine off-grid islands with model predictive control microgrid coordination[J]. Renewable Energy, 2021, 179:1271 - 1290.
- [15] nPro: The planning tool for district energy systems [EB/OL]. [2023 - 09 - 07]. https://app. npro. energy/demands.
- [16] SERIÑO M N V. Rising carbon footprint inequality in the Philippines [J]. Environmental Economics and Policy Studies, 2020, 22(2):173-195.
- [17] HOU Hui, XU Tao, WU Xixiu, et al. Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system [J]. Applied Energy, 2020, 271:115052.
- [18] SINHA A, DARUNTE L A, JONES C W, et al. Systems design and economic analysis of direct air capture of CO₂ through temperature vacuum swing adsorption using MIL-101 (Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbents[J]. Industrial & Engineering Chemistry Research, 2017, 56(3):750-764.

(丛 敏 编辑)